Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Microb Genom ; 9(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37439777

ABSTRACT

Conventional swine production typically houses pigs indoors and in large groups, whereas pasture-raised pigs are reared outdoors at lower stocking densities. Antimicrobial use also differs, with conventionally raised pigs often being exposed to antimicrobials directly or indirectly to control and prevent infectious disease. However, antimicrobial use can be associated with the development and persistence of antimicrobial resistance. In this study, we used shotgun metagenomic sequencing to compare the gut microbiomes and resistomes of pigs raised indoors on a conventional farm with those raised outdoors on pasture. The microbial compositions as well as the resistomes of both groups of pigs were significantly different from each other. Bacterial species such as Intestinibaculum porci, Pseudoscardovia radai and Sharpea azabuensis were relatively more abundant in the gut microbiomes of pasture-raised pigs and Hallella faecis and Limosilactobacillus reuteri in the conventionally raised swine. The abundance of antimicrobial resistance genes (ARGs) was significantly higher in the conventionally raised pigs for nearly all antimicrobial classes, including aminoglycosides, beta-lactams, macrolides-lincosamides-streptogramin B, and tetracyclines. Functionally, the gut microbiomes of the two group of pigs also differed significantly based on their carbohydrate-active enzyme (CAZyme) profiles, with certain CAZyme families associated with host mucin degradation enriched in the conventional pig microbiomes. We also recovered 1043 dereplicated strain-level metagenome-assembled genomes (≥90 % completeness and <5 % contamination) to provide taxonomic context for specific ARGs and metabolic functions. Overall, the study provides insights into the differences between the gut microbiomes and resistomes of pigs raised under two very different production systems.


Subject(s)
Anti-Infective Agents , Gastrointestinal Microbiome , Animals , Swine , Gastrointestinal Microbiome/genetics , Drug Resistance, Bacterial/genetics , Feces/microbiology , Anti-Bacterial Agents/pharmacology
2.
Microbiol Spectr ; 10(4): e0238022, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35880887

ABSTRACT

Pigs are among the most numerous and intensively farmed food-producing animals in the world. The gut microbiome plays an important role in the health and performance of swine and changes rapidly after weaning. Here, fecal samples were collected from pigs at 7 different times points from 7 to 140 days of age. These swine fecal metagenomes were used to assemble 1,150 dereplicated metagenome-assembled genomes (MAGs) that were at least 90% complete and had less than 5% contamination. These MAGs represented 472 archaeal and bacterial species, and the most widely distributed MAGs were the uncultured species Collinsella sp002391315, Sodaliphilus sp004557565, and Prevotella sp000434975. Weaning was associated with a decrease in the relative abundance of 69 MAGs (e.g., Escherichia coli) and an increase in the relative abundance of 140 MAGs (e.g., Clostridium sp000435835, Oliverpabstia intestinalis). Genes encoding for the production of the short-chain fatty acids acetate, butyrate, and propionate were identified in 68.5%, 18.8%, and 8.3% of the MAGs, respectively. Carbohydrate-active enzymes associated with the degradation of arabinose oligosaccharides and mixed-linkage glucans were predicted to be most prevalent among the MAGs. Antimicrobial resistance genes were detected in 327 MAGs, including 59 MAGs with tetracycline resistance genes commonly associated with pigs, such as tet(44), tet(Q), and tet(W). Overall, 82% of the MAGs were assigned to species that lack cultured representatives indicating that a large portion of the swine gut microbiome is still poorly characterized. The results here also demonstrate the value of MAGs in adding genomic context to gut microbiomes. IMPORTANCE Many of the bacterial strains found in the mammalian gut are difficult to culture and isolate due to their various growth and nutrient requirements that are frequently unknown. Here, we assembled strain-level genomes from short metagenomic sequences, so-called metagenome-assembled genomes (MAGs), that were derived from fecal samples collected from pigs at multiple time points. The genomic context of a number of antimicrobial resistance genes commonly detected in swine was also determined. In addition, our study connected taxonomy with potential metabolic functions such as carbohydrate degradation and short-chain fatty acid production.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Animals , Archaea/genetics , Bacteria , Carbohydrates , Gastrointestinal Microbiome/genetics , Mammals/genetics , Metagenomics/methods , Swine
3.
BMC Genomics ; 23(1): 69, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062879

ABSTRACT

BACKGROUND: The increasing prevalence and expanding geographical range of the chronic wasting disease (CWD) panzootic in cervids is threatening human, animal, environmental and economic health. The pathogenesis of CWD in cervids is, however, not well understood. We used RNA sequencing (RNA-seq) to compare the brain transcriptome from white-tailed deer (WTD; Odocoileus virginianus) clinically affected with CWD (n = 3) to WTD that tested negative (n = 8) for CWD. In addition, one preclinical CWD+ brain sample was analyzed by RNA-seq. RESULTS: We found 255 genes that were significantly deregulated by CWD, 197 of which were upregulated. There was a high degree of overlap in differentially expressed genes (DEGs) identified when using either/both the reference genome assembly of WTD for mapping sequenced reads to or the better characterized genome assembly of a closely related model species, Bos taurus. Quantitative PCR of a subset of the DEGs confirmed the RNA-seq data. Gene ontology term enrichment analysis found a majority of genes involved in immune activation, consistent with the neuroinflammatory pathogenesis of prion diseases. A metagenomic analysis of the RNA-seq data was conducted to look for the presence of spiroplasma and other bacteria in CWD infected deer brain tissue. CONCLUSIONS: The gene expression changes identified highlight the role of innate immunity in prion infection, potential disease associated biomarkers and potential targets for therapeutic agents. An association between CWD and spiroplasma infection was not found.


Subject(s)
Deer , Prions , Wasting Disease, Chronic , Animals , Cattle , Deer/genetics , Humans , Transcriptome , Wasting Disease, Chronic/genetics
4.
Reproduction ; 163(2): 69-83, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34904570

ABSTRACT

Defects in spermatogenesis are an important cause of male infertility. Multiple aspects of spermatogenesis are controlled by chromatin remodellers, including regulating transcription. We previously described mutations in chromatin remodelling gene Cecr2 that resulted in the lethal neural tube defect exencephaly in most mutant mice and subfertility in mice that were non-penetrant for exencephaly. Here, we show that the severity of male subfertility is dependent on age. Cecr2GT/Del males contain two mutant alleles, one of which is hypomorphic and therefore produces a small amount of protein. These males sire the fewest pups just after sexual maturity (88% fewer than Cecr2+/+ at P42-60) but improve with age (49% fewer than Cecr2+/+ at P81-100), although never completely recovering to Cecr2+/+(wild type) levels. When young, they also have defects in testis histology, in vivo fertilization frequency, sperm number and motility, and testis weight that show similar improvement with age. Immunostaining of staged seminiferous tubules showed CECR2 in type A, intermediate and B spermatogonia, and less in preleptotene and leptotene spermatocytes. Histological defects were first apparent in Cecr2GT/Del testes at P24, and RNA-seq analysis revealed 387 differentially expressed genes. This included 66 genes on the X chromosome (almost double the number on any other chromosome), all more highly expressed in Cecr2GT/Del testes. This inappropriate expression of X chromosome genes could be caused by a failure of effective meiotic sex chromosome inactivation. We identify several abnormally expressed genes that may contribute to defects in spermatogenesis at P24. Our results support a role for Cecr2 in juvenile spermatogenesis.


Subject(s)
Chromatin , Infertility, Male , Spermatogenesis , Transcription Factors , Animals , Chromatin Assembly and Disassembly , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Spermatogenesis/genetics , Testis/metabolism , Transcription Factors/metabolism
5.
PLoS One ; 16(5): e0251868, 2021.
Article in English | MEDLINE | ID: mdl-34033656

ABSTRACT

Evaluating RNA quality and transcriptomic profile of beef muscle over time post-mortem may provide insight into RNA degradation and underlying biological and functional mechanisms that accompany biochemical changes occurring post-mortem during transformation of muscle to meat. RNA was extracted from longissimus thoracis (LT) sampled from British Continental crossbred heifer carcasses (n = 7) stored at 4°C in an abattoir drip cooler at 5 time points post-mortem, i.e., 45 min (0 h), 6 h, 24 h, 48 h, and 72 h. Following RNA-Sequencing, processed reads were aligned to the ARS-UCD1.2 bovine genome assembly. Subsequent differential expression (DE) analysis identified from 51 to 1434 upregulated and 27 to 2256 downregulated DE genes at individual time points compared to time 0 h, showing a trend for increasing counts of both upregulated and downregulated genes over time. Gene ontology and biological pathway term enrichment analyses on sets of DE genes revealed several processes and their timelines of activation/deactivation that accompanied or were involved with muscle transformation to meat. Although the quality of RNA in refrigerated LT remained high for several days post-mortem, the expression levels of several known biomarker genes for meat quality began to change from 24 h onwards. Therefore, to ensure accuracy of predictions on meat quality traits based on the expression levels of those biomarker genes in refrigerated beef muscle tissue, it is crucial that those expression measurements be made on RNA sampled within 24 h post-mortem. The present study also highlighted the need for more research on the roles of mitochondrial genes and non-coding genes in orchestrating muscle tissue processes after death, and how pre-mortem immune status might influence post-mortem meat quality.


Subject(s)
Meat/analysis , Paraspinal Muscles/chemistry , RNA/genetics , Transcriptome/genetics , Animals , Cattle , Muscle, Skeletal/chemistry , Postmortem Changes , RNA/chemistry
6.
Appl Environ Microbiol ; 87(9)2021 04 13.
Article in English | MEDLINE | ID: mdl-33608290

ABSTRACT

Listeria monocytogenes is a deadly intracellular pathogen mostly associated with consumption of ready-to-eat foods. This study investigated the effectiveness of total beef fat (BF-T) from flaxseed-fed cattle and its fractions enriched with monounsaturated fatty acids (BF-MUFA) and polyunsaturated fatty acids (BF-PUFA), along with commercially available long-chain fatty acids (LC-FA), as natural antimicrobials against L. monocytogenes BF-T was ineffective at concentrations up to 6 mg/ml, while L. monocytogenes was susceptible to BF-MUFA and BF-PUFA, with MICs at pH 7 of 0.33 ± 0.21 mg/ml and 0.06 ± 0.03 mg/ml, respectively. The MIC of C14:0 was significantly lower than those of C16:0 and C18:0 (P < 0.05). Fatty acids c9-C16:1, C18:2n-6, and C18:3n-3 showed stronger inhibitory activity than c9-C18:1 and conjugated C18:2, with MICs of <1 mg/ml. Furthermore, global transcriptional analysis by transcriptome sequencing (RNA-seq) was performed to characterize the response of L. monocytogenes to selected fatty acids. Functional analysis indicated that antimicrobial LC-UFA repressed the expression of genes associated with nutrient transmembrane transport, energy generation, and oxidative stress resistance. On the other hand, upregulation of ribosome assembly and translation process is possibly associated with adaptive and repair mechanisms activated in response to LC-UFA. Virulence genes and genes involved in bile, acid, and osmotic stresses were largely downregulated, and more so for c9-C16:1, C18:2n-6, and C18:3n-3, likely through interaction with the master virulence regulator PrfA and the alternative sigma factor σBIMPORTANCEListeria monocytogenes is a bacterial pathogen known for its ability to survive and thrive under adverse environments and, as such, its control poses a significant challenge, especially with the trend of minimally processed and ready-to-eat foods. This work investigated the effectiveness of fatty acids from various sources as natural antimicrobials against L. monocytogenes and evaluated their potential role in L. monocytogenes pathogenicity modulation, using the strain ATCC 19111. The findings show that long-chain unsaturated fatty acids (LC-UFA), including unsaturated beef fat fractions from flaxseed-fed cattle, could have the potential to be used as effective antimicrobials for L. monocytogenes through controlling growth as well as virulence attenuation. This not only advances our understanding of the mode of action of LC-UFA against L. monocytogenes but also suggests the potential for use of beef fat or its fractions as natural antimicrobials for controlling foodborne pathogens.


Subject(s)
Fats/pharmacology , Fatty Acids/pharmacology , Listeria monocytogenes/drug effects , Red Meat , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/growth & development
7.
Sci Rep ; 10(1): 8044, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415111

ABSTRACT

Multiple methods to detect copy number variants (CNV) relying on different types of data have been developed and CNV have been shown to have an impact on phenotypes of numerous traits of economic importance in cattle, such as reproduction and immunity. Further improvements in CNV detection are still needed in regard to the trade-off between high-true and low-false positive variant identification rates. Instead of improving single CNV detection methods, variants can be identified in silico with high confidence when multiple methods and datasets are combined. Here, CNV were identified from whole-genome sequences (WGS) and genotype array (GEN) data on 96 Holstein animals. After CNV detection, two sets of high confidence CNV regions (CNVR) were created that contained variants found in both WGS and GEN data following an animal-based (n = 52) and a population-based (n = 36) pipeline. Furthermore, the change in false positive CNV identification rates using different GEN marker densities was evaluated. The population-based approach characterized CNVR, which were more often shared among animals (average 40% more samples per CNVR) and were more often linked to putative functions (48 vs 56% of CNVR) than CNV identified with the animal-based approach. Moreover, false positive identification rates up to 22% were estimated on GEN information. Further research using larger datasets should use a population-wide approach to identify high confidence CNVR.


Subject(s)
DNA Copy Number Variations , Genome , Genotype , Whole Genome Sequencing , Animals , Breeding , Cattle , Chromosome Mapping , Computational Biology/methods , Genetic Markers , Genomics/methods
8.
Gigascience ; 8(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31241156

ABSTRACT

BACKGROUND: Copy number variants (CNVs) contribute to genetic diversity and phenotypic variation. We aimed to discover CNVs in taurine cattle using a large collection of whole-genome sequences and to provide an interactive database of the identified CNV regions (CNVRs) that includes visualizations of sequence read alignments, CNV boundaries, and genome annotations. RESULTS: CNVs were identified in each of 4 whole-genome sequencing datasets, which together represent >500 bulls from 17 breeds, using a popular multi-sample read-depth-based algorithm, cn.MOPS. Quality control and CNVR construction, performed dataset-wise to avoid batch effects, resulted in 26,223 CNVRs covering 107.75 unique Mb (4.05%) of the bovine genome. Hierarchical clustering of samples by CNVR genotypes indicated clear separation by breeds. An interactive HTML database was created that allows data filtering options, provides graphical and tabular data summaries including Hardy-Weinberg equilibrium tests on genotype proportions, and displays genes and quantitative trait loci at each CNVR. Notably, the database provides sequence read alignments at each CNVR genotype and the boundaries of constituent CNVs in individual samples. Besides numerous novel discoveries, we corroborated the genotypes reported for a CNVR at the KIT locus known to be associated with the piebald coat colour phenotype in Hereford and some Simmental cattle. CONCLUSIONS: We present a large comprehensive collection of taurine cattle CNVs in a novel interactive visual database that displays CNV boundaries, read depths, and genome features for individual CNVRs, thus providing users with a powerful means to explore and scrutinize CNVRs of interest more thoroughly.


Subject(s)
DNA Copy Number Variations , Data Visualization , Databases, Genetic , Genetics, Population , Animals , Cattle , Quantitative Trait Loci , Whole Genome Sequencing
9.
Vaccine ; 37(13): 1743-1755, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30808565

ABSTRACT

We investigated gene expression patterns in whole blood and fecal microbiota profile as potential predictors of immune response to vaccination, using healthy M. hyopneumoniae infection free piglets (n = 120). Eighty piglets received a dose of prophylactic antibiotics during the first two days of life, whereas the remaining 40 did not. Blood samples for RNA-Seq analysis were collected on experimental Day 0 (D0; 28 days of age) just prior to vaccination, D2, and D6 post-vaccination. A booster vaccine was given at D24. Fecal samples for microbial 16SrRNA sequencing were collected at 7 days of age, and at D0 and D35 post-vaccination. Pigs were ranked based on the levels of M. hyopneumoniae-specific antibodies in serum samples collected at D35, and groups of 'high' (HR) and 'low' (LR) responder pigs (n = 15 each) were selected. Prophylactic antibiotics did not influence antibody titer levels and differential expression analysis did not reveal differences between HR and LR at any time-point (FDR > 0.05); however, based on functional annotation with Ingenuity Pathway Analysis, D2 post-vaccination, HR pigs were enriched for biological terms relating to increased activation of immune cells. In contrast, the immune activation decreased in HR, 6 days post-vaccination. No significant differences were observed prior to vaccination (D0). Two days post-vaccination, multivariate analysis revealed that ADAM8, PROSER3, B4GALNT1, MAP7D1, SPP1, HTRA4, and ENO3 genes were the most promising potential biomarkers. At D0, OTUs annotated to Prevotella, CF21, Bacteroidales and S24-7 were more abundant in HR, whereas Fibrobacter, Paraprevotella, Anaerovibrio, [Prevotella], YRC22, and Helicobacter positively correlated with the antibody titer as well as MYL1, SPP1, and ENO3 genes. Our study integrates gene differential expression and gut microbiota to predict vaccine response in pigs. The results indicate that post-vaccination gene-expression and early-life gut microbiota profile could potentially predict vaccine response in pigs, and inform a direction for future research.


Subject(s)
Bacterial Vaccines/immunology , Feces/microbiology , Gastrointestinal Microbiome , Gene Expression Profiling , Mycoplasma hyopneumoniae/immunology , Pneumonia of Swine, Mycoplasmal/prevention & control , Transcriptome , Animals , Bacterial Vaccines/administration & dosage , Swine , Vaccination
10.
G3 (Bethesda) ; 9(3): 911-919, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30670611

ABSTRACT

Mule deer (Odocoileus hemionus) are endemic to a wide variety of habitats in western North America, many of which are shared in sympatry with their closely related sister-species white-tailed deer (Odocoileus virginianus), whom they hybridize with in wild populations. Although mule deer meet many ideal conditions for a molecular ecological research species, such as high abundance, ecological importance, and broad dispersal and gene flow, conservation genetic studies have been limited by a relative lack of existing genomic resources and inherent difficulties caused by introgression with white-tailed deer. Many molecular tools currently available for the study of cervids were designed using reference assemblies of divergent model species, specifically cattle (Bos taurus). Bovidae and Cervidae diverged approximately 28 million years ago, therefore, we sought to ameliorate the available resources by contributing the first mule deer whole genome sequence draft assembly with an average genome-wide read depth of 25X, using the white-tailed genome assembly (Ovir.te_1.0) as a reference. Comparing the two assemblies, we identified ∼33 million single nucleotide polymorphisms (SNPs) and insertion/deletion variants. We then verified fixed SNP differences between the two species and developed a 40-loci SNP assay capable of identifying pure mule deer, white-tailed deer, and interspecific hybrids. Assignment capacity of the panel, which was tested on simulated datasets, is reliable up to and including the third backcross hybrid generation. Identification of post-F1 hybrids will be necessary for hybrid zone population studies going forward, and the new mule deer assembly will be a valuable resource for genetic and comparative genomics studies.


Subject(s)
Deer/genetics , Genome , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Animals , Cattle/genetics , Cell Nucleus/genetics , Genomics
11.
Sci Rep ; 7: 46203, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393889

ABSTRACT

It has been shown that inter-individual variation in host response to porcine reproductive and respiratory syndrome (PRRS) has a heritable component, yet little is known about the underlying genetic architecture of gene expression in response to PRRS virus (PRRSV) infection. Here, we integrated genome-wide genotype, gene expression, viremia level, and weight gain data to identify genetic polymorphisms that are associated with variation in inter-individual gene expression and response to PRRSV infection in pigs. RNA-seq analysis of peripheral blood samples collected just prior to experimental challenge (day 0) and at 4, 7, 11 and 14 days post infection from 44 pigs revealed 6,430 differentially expressed genes at one or more time points post infection compared to the day 0 baseline. We mapped genetic polymorphisms that were associated with inter-individual differences in expression at each day and found evidence of cis-acting expression quantitative trait loci (cis-eQTL) for 869 expressed genes (qval < 0.05). Associations between cis-eQTL markers and host response phenotypes using 383 pigs suggest that host genotype-dependent differences in expression of GBP5, GBP6, CCHCR1 and CMPK2 affect viremia levels or weight gain in response to PRRSV infection.


Subject(s)
Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Gene Expression Profiling , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Swine , Time Factors , Transcription, Genetic , Viremia/genetics , Viremia/virology , Weight Gain/genetics
12.
PLoS One ; 11(4): e0153615, 2016.
Article in English | MEDLINE | ID: mdl-27093427

ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant females causes fetal death and increased piglet mortality, but there is substantial variation in the extent of reproductive pathology between individual dams. This study used RNA-sequencing to characterize the whole blood transcriptional response to type 2 PRRSV in pregnant gilts during the first week of infection (at 0, 2, and 6 days post-inoculation), and attempted to identify gene expression signatures associated with a low or high level of fetal mortality rates (LFM and HFM; n = 8/group) at necropsy, 21 days post-inoculation. The initial response to infection measured at 2 days post-inoculation saw an upregulation of genes involved in innate immunity, such as interferon-stimulated antiviral genes and inflammatory markers, and apoptosis. A concomitant decrease in expression of protein synthesis and T lymphocyte markers was observed. By day 6 the pattern had reversed, with a drop in innate immune signaling and an increase in the expression of genes involved in cell division and T cell signaling. Differentially expressed genes (DEGs) associated with extremes of litter mortality rate were identified at all three time-points. Among the 15 DEGs upregulated in LFM gilts on all three days were several genes involved in platelet function, including integrins ITGA2B and ITGB3, and the chemokine PF4 (CXCL4). LFM gilts exhibited a higher baseline expression of interferon-stimulated and pro-inflammatory genes prior to infection, and of T cell markers two days post-infection, indicative of a more rapid progression of the immune response to PRRSV. This study has increased our knowledge of the early response to PRRSV in the blood of pregnant gilts, and could ultimately lead to the development of a biomarker panel that can be used to predict PRRSV-associated reproductive pathology.


Subject(s)
Blood Cells/virology , Gene Expression/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/mortality , Reproduction/genetics , Swine/virology , Animals , Blood Cells/immunology , Female , Fetal Death , Fetal Mortality , Immunity, Innate/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Pregnancy , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/mortality , Reproduction/immunology , Swine/immunology , T-Lymphocytes/immunology
13.
BMC Genomics ; 17: 196, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26951612

ABSTRACT

BACKGROUND: A region on Sus scrofa chromosome 4 (SSC4) surrounding single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) has been reported to be strongly associated with both weight gain and serum viremia in pigs after infection with PRRS virus (PRRSV). A proposed causal mutation in the guanylate binding protein 5 gene (GBP5) is predicted to truncate the encoded protein. To investigate transcriptional differences between WUR genotypes in early host response to PRRSV infection, an RNA-seq experiment was performed on globin depleted whole blood RNA collected on 0, 4, 7, 10 and 14 days post-infection (dpi) from eight littermate pairs with one AB (favorable) and one AA (unfavorable) WUR genotype animal per litter. RESULTS: Gene Ontology (GO) enrichment analysis of transcripts that were differentially expressed (DE) between dpi across both genotypes revealed an inflammatory response for all dpi when compared to day 0. However, at the early time points of 4 and 7dpi, several GO terms had higher enrichment scores compared to later dpi, including inflammatory response (p < 10(-7)), specifically regulation of NFkappaB (p < 0.01), cytokine, and chemokine activity (p < 0.01). At 10 and 14dpi, GO term enrichment indicated a switch to DNA damage response, cell cycle checkpoints, and DNA replication. Few transcripts were DE between WUR genotypes on individual dpi or averaged over all dpi, and little enrichment of any GO term was found. However, there were differences in expression patterns over time between AA and AB animals, which was confirmed by genotype-specific expression patterns of several modules that were identified in weighted gene co-expression network analyses (WGCNA). Minor differences between AA and AB animals were observed in immune response and DNA damage response (p = 0.64 and p = 0.11, respectively), but a significant effect between genotypes pointed to a difference in ion transport/homeostasis and the participation of G-coupled protein receptors (p = 8e-4), which was reinforced by results from regulatory and phenotypic impact factor analyses between genotypes. CONCLUSION: We propose these pathway differences between WUR genotypes are the result of the inability of the truncated GBP5 of the AA genotyped pigs to inhibit viral entry and replication as quickly as the intact GBP5 protein of the AB genotyped pigs.


Subject(s)
GTP-Binding Proteins/genetics , Polymorphism, Single Nucleotide , Porcine Reproductive and Respiratory Syndrome/genetics , Sus scrofa/genetics , Animals , Chemokines/immunology , Computational Biology , Cytokines/immunology , DNA Damage , Genotype , Inflammasomes/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus , Sequence Analysis, RNA , Sus scrofa/immunology , Sus scrofa/virology , Swine , Transcriptome , Viremia/genetics , Viremia/immunology
14.
Sci Rep ; 5: 12620, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26227241

ABSTRACT

To understand the role of miRNAs in regulating genes involved in host response to bacterial infection and shedding of foodborne pathogens, a systematic profiling of miRNAs and mRNAs from the whole blood of pigs upon Salmonella challenge was performed. A total of 62 miRNAs were differentially expressed post infection (false discovery rate <0.1). An integrative analysis of both the differentially expressed miRNAs and mRNAs using sequence-based miRNA target prediction and negative correlation of miRNA-mRNA profiles helped identify miRNA-mRNA networks that may potentially regulate host response to Salmonella infection. From these networks, miR-214 and miR-331-3p were identified as new candidates potentially associated with Salmonella infection. An miRNA seed sequence analysis suggested that these miRNAs regulate several critical immune-related genes including SLC11A1, PIGE-108A11.3 and VAV2. We showed that challenged pigs had reduced miR-214 expression and increased miR-331-3p expression in the whole blood. Furthermore, the expression of the proposed targets of miR-214 (SLC11A1 and PIGE-108A11.3) increased while that of the proposed target of miR-331-3p (VAV2) decreased following challenge (expression changes confirmed by in vitro assays). Based on these observations, we propose potential roles for miR-214 and miR-331-3p in regulation of immune responses to Salmonella infection.


Subject(s)
MicroRNAs/genetics , Salmonella Infections, Animal/genetics , Sus scrofa/genetics , Animals , Cation Transport Proteins/genetics , Foodborne Diseases/microbiology , Gene Expression Profiling , Gene Expression Regulation , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , MicroRNAs/blood , RNA, Messenger/blood , Reproducibility of Results , Salmonella Infections, Animal/immunology , Sus scrofa/microbiology
15.
BMC Genomics ; 16: 412, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26016888

ABSTRACT

BACKGROUND: Previously, we identified a major quantitative trait locus (QTL) for host response to Porcine Respiratory and Reproductive Syndrome virus (PRRSV) infection in high linkage disequilibrium (LD) with SNP rs80800372 on Sus scrofa chromosome 4 (SSC4). RESULTS: Within this QTL, guanylate binding protein 5 (GBP5) was differentially expressed (DE) (p < 0.05) in blood from AA versus AB rs80800372 genotyped pigs at 7,11, and 14 days post PRRSV infection. All variants within the GBP5 transcript in LD with rs80800372 exhibited allele specific expression (ASE) in AB individuals (p < 0.0001). A transcript re-assembly revealed three alternatively spliced transcripts for GBP5. An intronic SNP in GBP5, rs340943904, introduces a splice acceptor site that inserts five nucleotides into the transcript. Individuals homozygous for the unfavorable AA genotype predominantly produced this transcript, with a shifted reading frame and early stop codon that truncates the 88 C-terminal amino acids of the protein. RNA-seq analysis confirmed this SNP was associated with differential splicing by QTL genotype (p < 0.0001) and this was validated by quantitative capillary electrophoresis (p < 0.0001). The wild-type transcript was expressed at a higher level in AB versus AA individuals, whereas the five-nucleotide insertion transcript was the dominant form in AA individuals. Splicing and ASE results are consistent with the observed dominant nature of the favorable QTL allele. The rs340943904 SNP was also 100 % concordant with rs80800372 in a validation population that possessed an alternate form of the favorable B QTL haplotype. CONCLUSIONS: GBP5 is known to play a role in inflammasome assembly during immune response. However, the role of GBP5 host genetic variation in viral immunity is novel. These findings demonstrate that rs340943904 is a strong candidate causal mutation for the SSC4 QTL that controls variation in host response to PRRSV.


Subject(s)
GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/chemistry , Quantitative Trait Loci , Sus scrofa , Alternative Splicing , Animals , GTP-Binding Proteins/blood , Gene Expression Regulation , Genotype , Polymorphism, Single Nucleotide , Porcine Reproductive and Respiratory Syndrome/blood , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/immunology , RNA Splice Sites , Swine
16.
BMC Genomics ; 15: 954, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25374277

ABSTRACT

BACKGROUND: Transcriptome analysis of porcine whole blood has several applications, which include deciphering genetic mechanisms for host responses to viral infection and vaccination. The abundance of alpha- and beta-globin transcripts in blood, however, impedes the ability to cost-effectively detect transcripts of low abundance. Although protocols exist for reduction of globin transcripts from human and mouse/rat blood, preliminary work demonstrated these are not useful for porcine blood Globin Reduction (GR). Our objectives were to develop a porcine specific GR protocol and to evaluate the GR effects on gene discovery and sequence read coverage in RNA-sequencing (RNA-seq) experiments. RESULTS: A GR protocol for porcine blood samples was developed using RNase H with antisense oligonucleotides specifically targeting porcine hemoglobin alpha (HBA) and beta (HBB) mRNAs. Whole blood samples (n = 12) collected in Tempus tubes were used for evaluating the efficacy and effects of GR on RNA-seq. The HBA and HBB mRNA transcripts comprised an average of 46.1% of the mapped reads in pre-GR samples, but those reads reduced to an average of 8.9% in post-GR samples. Differential gene expression analysis showed that the expression level of 11,046 genes were increased, whereas 34 genes, excluding HBA and HBB, showed decreased expression after GR (FDR <0.05). An additional 815 genes were detected only in post-GR samples. CONCLUSIONS: Our porcine specific GR primers and protocol minimize the number of reads of globin transcripts in whole blood samples and provides increased coverage as well as accuracy and reproducibility of transcriptome analysis. Increased detection of low abundance mRNAs will ensure that studies relying on transcriptome analyses do not miss information that may be vital to the success of the study.


Subject(s)
Genetic Association Studies , Globins/genetics , RNA/genetics , Sequence Analysis, RNA , Animals , Down-Regulation , Gene Expression Regulation , Swine , Transcription, Genetic , alpha-Globins/genetics , beta-Globins/genetics
17.
BMC Genomics ; 15: 452, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24912583

ABSTRACT

BACKGROUND: Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonise the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively few have used correlation of shedding traits with gene expression patterns to identify genes whose variable expression among different individuals may be associated with differences in Salmonella clearance and resistance. Here, we aimed to identify porcine genes and gene co-expression networks that differentiate distinct responses to Salmonella challenge with respect to faecal Salmonella shedding. RESULTS: Peripheral blood transcriptome profiles from 16 pigs belonging to extremes of the trait of faecal Salmonella shedding counts recorded up to 20 days post-inoculation (low shedders (LS), n = 8; persistent shedders (PS), n = 8) were generated using RNA-sequencing from samples collected just before (day 0) and two days after (day 2) Salmonella inoculation. Weighted gene co-expression network analysis (WGCNA) of day 0 samples identified four modules of co-expressed genes significantly correlated with Salmonella shedding counts upon future challenge. Two of those modules consisted largely of innate immunity related genes, many of which were significantly up-regulated at day 2 post-inoculation. The connectivity at both days and the mean gene-wise expression levels at day 0 of the genes within these modules were higher in networks constructed using LS samples alone than those using PS alone. Genes within these modules include those previously reported to be involved in Salmonella resistance such as SLC11A1 (formerly NRAMP1), TLR4, CD14 and CCR1 and those for which an association with Salmonella is novel, for example, SIGLEC5, IGSF6 and TNFSF13B. CONCLUSIONS: Our analysis integrates gene co-expression network analysis, gene-trait correlations and differential expression to provide new candidate regulators of Salmonella shedding in pigs. The comparatively higher expression (also confirmed in an independent dataset) and the significantly higher connectivity of genes within the Salmonella shedding associated modules in LS compared to PS even before Salmonella challenge may be factors that contribute to the decreased faecal Salmonella shedding observed in LS following challenge.


Subject(s)
Feces/microbiology , Salmonella Infections, Animal/genetics , Salmonella typhimurium/physiology , Swine Diseases/genetics , Animals , Bacterial Shedding , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Immunity, Innate , Salmonella Infections, Animal/blood , Salmonella Infections, Animal/microbiology , Swine , Swine Diseases/blood , Swine Diseases/microbiology
18.
PLoS One ; 9(4): e94352, 2014.
Article in English | MEDLINE | ID: mdl-24718561

ABSTRACT

One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , MicroRNAs/genetics , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/microbiology , Sus scrofa/genetics , Sus scrofa/microbiology , Animals , Gene Ontology , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
19.
BMC Genomics ; 14: 609, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24020371

ABSTRACT

BACKGROUND: Understanding how species-specific microRNAs (miRNAs) contribute to species-specific phenotypes is a central topic in biology. This study aimed to elucidate the role of ruminant-specific miRNAs in shaping mRNA expression divergence between ruminant and non-ruminant species. RESULTS: We analyzed miRNA and mRNA transcriptomes generated by Illumina sequencing from whole blood samples of cattle and a closely related non-ruminant species, pig. We found evidence of expansion of cattle-specific miRNAs by analyzing miRNA conservation among 57 vertebrate species. The emergence of cattle-specific miRNAs was accompanied by accelerated sequence evolution at their target sites. Further, the target genes of cattle-specific miRNAs show markedly reduced expression compared to their pig and human orthologues. We found that target genes with conserved or non-conserved target sites of cattle-specific miRNAs exhibit reduced expression. One of the significantly enriched KEGG pathway terms for the target genes of the cattle-specific miRNAs is the insulin signalling pathway, raising the possibility that some of these miRNAs may modulate insulin resistance in ruminants. CONCLUSIONS: We provide evidence of rapid miRNA-mediated regulatory evolution in the ruminant lineage. Cattle-specific miRNAs play an important role in shaping gene expression divergence between ruminant and non-ruminant species, by influencing the expression of targets genes through both conserved and cattle-specific target sites.


Subject(s)
Cattle/genetics , MicroRNAs/genetics , Ruminants/genetics , Animals , Base Sequence , Conserved Sequence , Evolution, Molecular , Gene Library , Humans , Species Specificity , Swine , Transcriptome
20.
PLoS One ; 6(6): e20413, 2011.
Article in English | MEDLINE | ID: mdl-21673989

ABSTRACT

Eukaryotic genes are distributed along chromosomes as clusters of highly expressed genes termed RIDGEs (Regions of IncreaseD Gene Expression) and lowly expressed genes termed anti-RIDGEs, interspersed among genes expressed at intermediate levels or not expressed. Previous studies based on this observation suggested a dual mechanism of gene regulation, where, in addition to transcription factors, the chromosomal domain influences the expression level of their embedded genes. The objectives here were to provide evidence for the existence of chromosomal regional regulation of transcription in the bovine genome, to analyse the genomic features of genes located within RIDGEs versus anti-RIDGEs and tissue-specific genes versus housekeeping and to examine the genomic distribution of genes subject to positive selection in bovines. Gene expression analysis of four brain tissues and the anterior pituitary of 28 cows identified 70 RIDGEs and 41 anti-RIDGEs (harbouring 3735 and 1793 bovine genes respectively) across the bovine genome which are significantly higher than expected by chance. Housekeeping genes (defined here as genes expressed in all five tissues) were over-represented within RIDGEs but tissue-specific genes (genes expressed in only one of the five tissues) were not. Housekeeping genes and genes within RIDGEs had, in general, higher expression levels and GC content but shorter gene lengths and intron lengths than tissue-specific genes and genes within anti-RIDGES. Our findings suggest the existence of chromosomal regional regulation of transcription in the bovine genome. The genomic features observed for genes within RIDGEs and housekeeping genes in bovines agree with previous studies in several other species further strengthening the hypothesis of selective pressure to keep the highly and widely expressed genes short and compact for transcriptional efficiency. Further, positively selected genes were found non-randomly distributed on the genome with a preference for RIDGEs and regions of intermediate gene expression compared to anti-RIDGEs.


Subject(s)
Cattle/genetics , Gene Expression Regulation , Genome/genetics , Transcription, Genetic/genetics , Animals , Brain/metabolism , Chromosomes, Mammalian/genetics , Evolution, Molecular , Gene Expression Profiling , Genomics , Humans , Multigene Family/genetics , Organ Specificity/genetics , Pituitary Gland, Anterior/metabolism , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...