Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36354584

ABSTRACT

(1) Background: Lung ischemia-reperfusion (IR) injury increases the mortality and morbidity of patients undergoing lung transplantation. The objective of this study was to identify the key initiator of lung IR injury and to evaluate pharmacological therapeutic approaches using a functional inhibitor against the identified molecule. (2) Methods: Using a mouse hilar clamp model, the combination of RNA sequencing and histological investigations revealed that neutrophil-derived S100A8/A9 plays a central role in inflammatory reactions during lung IR injury. Mice were assigned to sham and IR groups with or without the injection of anti-S100A8/A9 neutralizing monoclonal antibody (mAb). (3) Results: Anti-S100A8/A9 mAb treatment significantly attenuated plasma S100A8/A9 levels compared with control IgG. As evaluated by oxygenation capacity and neutrophil infiltration, the antibody treatment dramatically ameliorated the IR injury. The gene expression levels of cytokines and chemokines induced by IR injury were significantly reduced by the neutralizing antibody. Furthermore, the antibody treatment significantly reduced TUNEL-positive cells, indicating the presence of apoptotic cells. (4) Conclusions: We identified S100A8/A9 as a novel therapeutic target against lung IR injury.

2.
Front Cardiovasc Med ; 8: 761591, 2021.
Article in English | MEDLINE | ID: mdl-35187100

ABSTRACT

OBJECTIVES: The molecular mechanisms underlying post-operative pericardial adhesions remain poorly understood. We aimed to unveil the temporal molecular and cellular mechanisms underlying tissue dynamics during adhesion formation, including inflammation, angiogenesis, and fibrosis. METHODS AND RESULTS: We visualized cell-based tissue dynamics during pericardial adhesion using histological evaluations. To determine the molecular mechanism, RNA-seq was performed. Chemical inhibitors were administered to confirm the molecular mechanism underlying adhesion formation. A high degree of adhesion formation was observed during the stages in which collagen production was promoted. Histological analyses showed that arterioles excessively sprouted from pericardial tissues after the accumulation of neutrophils on the heart surface in mice as well as humans. The combination of RNA-seq and histological analyses revealed that hyperproliferative endothelial and smooth muscle cells with dedifferentiation appeared in cytokine-exposed sprouting vessels and adhesion tissue but not in quiescent vessels in the heart. SMAD2/3 and ERK activation was observed in sprouting vessels. The simultaneous abrogation of PI3K/ERK or TGF-ß/MMP9 signaling significantly decreased angiogenic sprouting, followed by inhibition of adhesion formation. Depleting MMP9-positive neutrophils shortened mice survival and decreased angiogenic sprouting and fibrosis in the adhesion. Our data suggest that TGF-ß/matrix metalloproteinase-dependent tissue remodeling and PI3K/ERK signaling activation might contribute to unique angiogenesis with dedifferentiation of vascular smooth muscle cells from the contractile to the synthetic phenotype for fibrosis in the pericardial cavity. CONCLUSIONS: Our findings provide new insights in developing prevention strategies for pericardial adhesions by targeting the recruitment of vascular cells from heart tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...