Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 61, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167441

ABSTRACT

Animal models for retinal degeneration are essential for elucidating its pathogenesis and developing new therapeutic strategies in humans. N-methyl-N-nitrosourea (MNU) has been extensively used to construct a photoreceptor-specific degeneration model, which has served to unveil the molecular process of photoreceptor degeneration as well as the mechanisms regulating the protective responses of remaining cells. Methyl methanesulphonate (MMS), also known to cause photoreceptor degeneration, is considered a good alternative to MNU due to its higher usability; however, detailed pathophysiological processes after MMS treatment remain uncharacterized. Here, we analyzed the time course of photoreceptor degeneration, Müller glial proliferation, and expression of secretory factors after MNU and MMS treatments in rats. While the timing of rod degeneration was similar between the treatments, we unexpectedly found that cones survived slightly longer after MMS treatment. Müller glia reentered the cell cycle at a similar timing after the two treatments; however, the G1/S transition occurred earlier after MMS treatment. Moreover, growth factors such as FGF2 and LIF were more highly upregulated in the MMS model. These data suggest that comparative analyses of the two injury models may be beneficial for understanding the complex regulatory mechanisms underlying the proliferative response of Müller glia.


Subject(s)
Retinal Degeneration , Humans , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/metabolism , Alkylating Agents/toxicity , Neuroglia/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/metabolism , Disease Models, Animal
2.
Sci Rep ; 13(1): 22712, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38123648

ABSTRACT

Retinal Müller glia have a capacity to regenerate neurons in lower vertebrates like zebrafish, but such ability is extremely limited in mammals. In zebrafish, Müller glia proliferate after injury, which promotes their neurogenic reprogramming while inhibiting reactive gliosis. In mammals, however, how the cell cycle affects the fate of Müller glia after injury remains unclear. Here, we focused on the expression of proneural transcription factors, Ngn2 and Ascl1, and a gliosis marker glial fibrillary acidic protein (GFAP) in rat Müller glia after N-methyl-N-nitrosourea (MNU)-induced photoreceptor injury and analyzed the role of Müller glia proliferation in the regulation of their expression using retinal explant cultures. Thymidine-induced G1/S arrest of Müller glia proliferation significantly hampered the expression of Ascl1, Ngn2, and GFAP, and release from the arrest induced their upregulation. The migration of Müller glia nuclei into the outer nuclear layer was also shown to be cell cycle-dependent. These data suggest that, unlike the situation in zebrafish, cell cycle progression of Müller glia in mammals promotes both neurogenic reprogramming and reactive gliosis, which may be one of the mechanisms underlying the limited regenerative capacity of the mammalian retina.


Subject(s)
Gliosis , Zebrafish , Animals , Rats , Gliosis/chemically induced , Gliosis/metabolism , Transcription Factors/metabolism , Neuroglia/metabolism , Retina/metabolism , Cell Cycle , Mammals
3.
Sci Rep ; 12(1): 19584, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379991

ABSTRACT

Mammalian Müller glia express transcription factors and cell cycle regulators essential for the function of retinal progenitors, indicating the latent neurogenic capacity; however, the role of these regulators remains unclear. To gain insights into the role of these regulators in Müller glia, we analyzed expression of transcription factors (Pax6, Vsx2 and Nfia) and cell cycle regulators (cyclin D1 and D3) in rodent Müller glia, focusing on their age- and cell cycle-related expression patterns. Expression of Pax6, Vsx2, Nfia and cyclin D3, but not cyclin D1, increased in Müller glia during development. Photoreceptor injury induced cell cycle-associated increase of Vsx2 and cyclin D1, but not Pax6, Nfia, and cyclin D3. In dissociated cultures, cell cycle-associated increase of Pax6 and Vsx2 was observed in Müller glia from P10 mice but not from P21 mice. Nfia levels were highly correlated with EdU incorporation suggesting their activation during S phase progression. Cyclin D1 and D3 were transiently upregulated in G1 phase but downregulated after S phase entry. Our findings revealed previously unknown links between cell cycle progression and regulator protein expression, which likely affect the cell fate decision of proliferating Müller glia.


Subject(s)
Neuroglia , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Cyclin D3/metabolism , Cell Proliferation , Neuroglia/metabolism , Cell Cycle/physiology , Retina/metabolism , Mammals/metabolism , Homeodomain Proteins/metabolism
4.
Environ Res ; 189: 109977, 2020 10.
Article in English | MEDLINE | ID: mdl-32980030

ABSTRACT

Acrylamide (AA) has recently been recognized as an immediate hazardous chemical compound owing to its various toxicities and unavoidable contamination of certain daily foods prepared at a high temperature. AA in foods is thus a worldwide concern; however, its toxicity at the dietary relevant concentration has yet to be experimentally elucidated. To determine whether dietary AA intake causes adverse health effects, adult zebrafish were fed a diet containing AA at a relevant dose for one month. Although AA-fed zebrafish showed no superficial abnormalities, their spleen was severely swollen. Therefore, their spleen was analyzed histologically and pathologically and the changes in cytokine expression in their spleen were also examined. Based on our findings, the intake of AA-containing food caused splenic damages, including cyst formation, hemorrhage, and inflammation, which were accompanied by immune responses as indicated by the appearance of a melanomacrophage center, activation of macrophages, and upregulation of major inflammatory cytokines in the spleen. Collectively, for the first time, we provided experimental evidence of the splenic toxicity caused by dietary AA intake.


Subject(s)
Acrylamide , Zebrafish , Acrylamide/toxicity , Animals , Diet , Hot Temperature , Spleen
5.
Sci Rep ; 10(1): 1488, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001733

ABSTRACT

Müller glia, the principal glial cell type in the retina, have the potential to reenter the cell cycle after retinal injury. In mammals, proliferation of Müller glia is followed by gliosis, but not regeneration of neurons. Retinal injury is also accompanied by phagocytic removal of degenerated cells. We here investigated the possibility that proliferation and gliosis of Müller glia and phagocytosis of degenerated cells may be regulated by the same molecular pathways. After N-methyl-N-nitrosourea-induced retinal injury, degenerated photoreceptors were eliminated prior to the infiltration of microglia/macrophages into the outer nuclear layer, almost in parallel with cell cycle reentry of Müller glia. Inhibition of microglia/macrophage activation with minocycline did not affect the photoreceptor clearance. Accumulation of lysosomes and rhodopsin-positive photoreceptor debris within the cytoplasm of Müller glia indicated that Müller glia phagocytosed most photoreceptor debris. Pharmacological inhibition of phosphatidylserine and Rac1, key regulators of the phagocytic pathway, prevented cell cycle reentry, migration, upregulation of glial fibrillary acidic protein, and phagocytic activity of Müller glia. These data provide evidence that phosphatidylserine and Rac1 may contribute to the crosstalk between different signaling pathways activated in Müller glia after injury.


Subject(s)
Phosphatidylserines/metabolism , Retina/injuries , rac1 GTP-Binding Protein/metabolism , Animals , Cell Cycle , Cell Line , Cell Proliferation , Disease Models, Animal , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Gliosis/metabolism , Gliosis/pathology , Male , Phagocytosis , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Rats , Rats, Wistar , Retina/metabolism , Retina/pathology , Signal Transduction
6.
Med Mol Morphol ; 53(4): 198-209, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32002664

ABSTRACT

N-methyl-N-nitrosourea (MNU) is known to cause apoptosis of photoreceptor cells and changes in retinal pigment epithelium (RPE). However, the changes in choriocapillaris, which nourishes photoreceptor cells by diffusing tissue fluid through RPE, have not been reported in detail. Therefore, we studied the ultrastructural transformation in and around the choriocapillaris to characterize the interdependence between choriocapillaris and surrounding tissue components in a mouse model. Seven-week-old male C57BL/6 mice were given a single intraperitoneal injection of MNU (60 mg/kg of body weight). Perfusion-fixed eyeballs were examined chronologically using immunohistochemistry and electron microscopy until the photoreceptor cells were lost. Sequential ultrastructural changes were observed in photoreceptor cells, RPE, Bruch's membrane, choriocapillaris, and choroidal melanocytes after an MNU injection. The lumens of the choriocapillaris narrowed following dilation, and the vascular endothelium showed structural alterations. When the photoreceptor cells were completely lost, the choriocapillaris appeared to be in a recovery process. Our results suggest that transport abnormality through Bruch's membrane and structural changes in the choroid might have influenced the morphology of choriocapillaris. The thin wall of the choriocapillaris appears to be the cause of the vulnerability with its altered morphology.


Subject(s)
Choroid/ultrastructure , Methylnitrosourea/toxicity , Retinal Degeneration/pathology , Animals , Apoptosis/drug effects , Choroid/drug effects , Choroid/pathology , Disease Models, Animal , Humans , Injections, Intraperitoneal , Male , Methylnitrosourea/administration & dosage , Mice , Mice, Inbred C57BL , Microscopy, Electron , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/ultrastructure , Retinal Degeneration/chemically induced , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/ultrastructure
7.
Mol Vis ; 22: 1103-1121, 2016.
Article in English | MEDLINE | ID: mdl-27703306

ABSTRACT

PURPOSE: p27KIP1 (p27), originally identified as a cell cycle inhibitor, is now known to have multifaceted roles beyond cell cycle regulation. p27 is required for the normal histogenesis of the RPE, but the role of p27 in the mature RPE remains elusive. To define the role of p27 in the maintenance and function of the RPE, we investigated the effects of p27 deletion on the responses of the RPE after photoreceptor damage. METHODS: Photoreceptor damage was induced in wild-type (WT) and p27 knockout (KO) mice with N-methyl-N-nitrosourea (MNU) treatment. Damage-induced responses of the RPE were investigated with bromodeoxyuridine (BrdU) incorporation assays, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays at different stages after MNU treatment. Subcellular localization of p27 in the WT RPE was also analyzed in vivo and in vitro. RESULTS: MNU treatment induced photoreceptor-specific degeneration in the WT and KO retinas. BrdU incorporation assays revealed virtually no proliferation of RPE cells in the WT retinas while, in the KO retinas, approximately 16% of the RPE cells incorporated BrdU at day 2 after MNU treatment. The RPE in the KO retinas developed aberrant protrusions into the outer nuclear layer in response to photoreceptor damage and engulfed outer segment debris, as well as TUNEL-positive photoreceptor cells. Increased phosphorylation of myosin light chains and their association with rhodopsin-positive phagosomes were observed in the mutant RPE, suggesting possible deregulation of cytoskeletal dynamics. In addition, WT RPE cells exhibited evidence of the epithelial-mesenchymal transition (EMT), including morphological changes, induction of α-smooth muscle actin expression, and attenuated expression of tight junction protein ZO-1 while these changes were absent in the KO retinas. In the normal WT retinas, p27 was localized to the nuclei of RPE cells while nuclear and cytoplasmic p27 was detected in RPE cells undergoing EMT, suggesting a role for cytoplasmic p27 in the phenotype changes of RPE cells. CONCLUSIONS: p27 loss promoted proliferation and phagocytic activity of RPE cells while preventing EMT after photoreceptor damage. These findings provide evidence for the role of p27 in the control of RPE responses to retinal damage.


Subject(s)
Cell Proliferation/physiology , Cyclin-Dependent Kinase Inhibitor p27/physiology , Epithelial-Mesenchymal Transition , Phagocytosis/physiology , Photoreceptor Cells, Vertebrate/physiology , Retinal Degeneration/physiopathology , Retinal Pigment Epithelium/metabolism , Animals , Cell Count , Cells, Cultured , DNA Replication , Fluorescent Antibody Technique, Indirect , In Situ Nick-End Labeling , Methylnitrosourea/toxicity , Mice , Mice, Inbred C57BL , Mice, Knockout , Photoreceptor Cells, Vertebrate/drug effects , Real-Time Polymerase Chain Reaction , Retinal Degeneration/chemically induced
8.
Invest Ophthalmol Vis Sci ; 57(3): 1169-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26975029

ABSTRACT

PURPOSE: Müller glia, the principal glial cell type in the retina, have the potential to proliferate and regenerate neurons after retinal damage. However, unlike the situation in fish and birds, this capacity of Müller glia is extremely limited in mammals. To gain new insights into the mechanisms that hamper retinal regeneration in mammals, we examined the cell cycle progression and DNA damage response in Müller glia after retinal damage. METHODS: Expression of cell cycle-related proteins and DNA damage response were analyzed in adult rat and mouse retinas after N-methyl-N-nitrosourea (MNU)- or N-methyl-D-aspartate (NMDA)-induced retinal damage. Zebrafish and postnatal rat retinas were also investigated for comparison. Analysis was conducted by using immunofluorescence, Western blotting, and quantitative real-time polymerase chain reaction. RESULTS: In the rat retina, most Müller glia reentered the cell cycle after MNU-induced photoreceptor damage while no proliferative response was observed in the mouse model. Cell cycle reentry of rat Müller glia was accompanied by DNA damage response including the phosphorylation of the histone variant H2AX and upregulation of p53 and p21. The DNA damage response was also observed in rat Müller glia after NMDA-induced loss of inner retinal neurons, but not in zebrafish Müller glia or rat retinal progenitor cells. CONCLUSIONS: Our findings suggest that the DNA damage response induced by unscheduled cell cycle reentry may be one of the mechanisms that limit the proliferative and regenerative capacity of Müller glia in the mammalian retina.


Subject(s)
Cyclin D1/genetics , DNA Damage/genetics , Ependymoglial Cells/pathology , Gene Expression Regulation , Photoreceptor Cells/pathology , Retinal Diseases/genetics , Retinal Neurons/pathology , Animals , Blotting, Western , Cell Count , Cell Cycle , Cell Proliferation , Cyclin D1/biosynthesis , Cyclin-Dependent Kinase 4/biosynthesis , Cyclin-Dependent Kinase 4/genetics , Disease Models, Animal , Ependymoglial Cells/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred C57BL , Nerve Regeneration/genetics , Photoreceptor Cells/metabolism , RNA/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Retina/metabolism , Retina/pathology , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...