Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 10(2)2018 Jan 29.
Article in English | MEDLINE | ID: mdl-29382125

ABSTRACT

The hydrogen molecule (H2), which has low redox potential, is produced by colonic fermentation. We examined whether increased hydrogen (H2) concentration in the portal vein in rats fed high amylose maize starch (HAS) helped alleviate oxidative stress, and whether the transplantation of rat colonic microbiota with high H2 production can shift low H2-generating rats (LG) to high H2-generating rats (HG). Rats were fed a 20% HAS diet for 10 days and 13 days in experiments 1 and 2, respectively. After 10 days (experiment 1), rats underwent a hepatic ischemia-reperfusion (IR) operation. Rats were then categorized into quintiles of portal H2 concentration. Plasma alanine aminotransferase activity and hepatic oxidized glutathione concentration were significantly lower as portal H2 concentration increased. In experiment 2, microbiota derived from HG (the transplantation group) or saline (the control group) were orally inoculated into LG on days 3 and 4. On day 13, portal H2 concentration in the transplantation group was significantly higher compared with the control group, and positively correlated with genera Bifidobacterium, Allobaculum, and Parabacteroides, and negatively correlated with genera Bacteroides, Ruminococcus, and Escherichia. In conclusion, the transplantation of microbiota derived from HG leads to stable, high H2 production in LG, with the resultant high production of H2 contributing to the alleviation of oxidative stress.


Subject(s)
Amylose/administration & dosage , Colon/microbiology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Hydrogen/metabolism , Starch/administration & dosage , Animals , Bacteroidetes , Bifidobacterium , Colon/metabolism , Diet, High-Fat , Firmicutes , RNA, Ribosomal, 16S/isolation & purification , Rats , Ruminococcus , Sequence Analysis, DNA , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...