Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 704(1-3): 7-14, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23461847

ABSTRACT

An isolated atrial preparation of the mouse is useful for analyzing the actions of drugs on the myocardium, autonomic neurons and endocardial endothelium. The aim of the present study was to examine the functions of intrinsic neurons of the atrium using a ganglionic stimulant, 1,1-dimethyl-4-phenylpiperazinium (DMPP). DMPP (1-100 µM) caused a negative chronotropic action followed by a positive chronotropic action in spontaneously beating right atria and also caused biphasic inotropic actions consisting of initial inhibition followed by potentiation of electrical field stimulation (EFS)-induced contraction in the left atria. Inotropic actions in the left atria induced by DMPP were characterized using some autonomic drugs and M2 and/or M3 muscarinic receptor knockout (M2R-KO, M3R-KO and M2M3R-KO) mice. Atropine and hexamethonium decreased the initial negative inotropic actions of DMPP. In the atria from pertussis toxin-treated, M2R-KO and M2/M3R-KO mice, the negative inotropic actions were abolished. On the other hand, the following positive inotropic actions were decreased by hexamethonium, atropine and atenolol. In the atria from reserpine-treated mice, positive inotropic actions were also decreased. The positive inotropic action induced by DMPP was almost the same in M2R-KO mice but was reduced in both M3R-KO mice and M2/M3R-KO mice. In conclusion, DMPP caused biphasic inotropic/chronotropic actions in the mouse atrium through activation of intrinsic cholinergic and adrenergic neurons. M2 and M3 muscarinic receptors and ß1-adrenoceptor are thought to be involved in these actions.


Subject(s)
Dimethylphenylpiperazinium Iodide/pharmacology , Ganglionic Stimulants/pharmacology , Heart Atria/drug effects , Receptor, Muscarinic M2/physiology , Receptor, Muscarinic M3/physiology , Receptors, Adrenergic, beta-1/physiology , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Atenolol/pharmacology , Atropine/pharmacology , Cholinesterase Inhibitors/pharmacology , Electric Stimulation , Female , Heart Rate/drug effects , Male , Mice , Mice, Knockout , Muscarinic Antagonists/pharmacology , Myocardial Contraction/drug effects , Physostigmine/pharmacology , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M3/antagonists & inhibitors
2.
Eur J Pharmacol ; 670(1): 236-43, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21924260

ABSTRACT

Although muscarinic M(2) and M(3) receptors are known to be important for regulation of gastric and small intestinal motility, muscarinic receptor subtypes regulating colonic function remain to be investigated. The aim of this study was to characterize muscarinic receptors involved in regulation of colonic contractility. M(2) and/or M(3) receptor knockout (KO) and wild-type mice were used in in vivo (defecation, colonic propulsion) and in vitro (contraction) experiments. Amount of feces was significantly decreased in M(3)R-KO and M(2)/M(3)R-KO mice but not in M(2)R-KO mice. Ranking of colonic propulsion was wild-type=M(2)R-KO>M(3)R-KO>M(2)/M(3)R-KO. In vitro, the amplitude of migrating motor complexes in M(2)R-KO, M(3)R-KO and M(2)/M(3)R-KO mice was significantly lower than that in wild-type mice. Carbachol caused concentration-dependent contraction of the proximal colon and distal colon from wild-type mice. In M(2)R-KO mice, the concentration-contraction curves shifted to the right and downward. In contrast, carbachol caused non-sustained contraction and relaxation in M(3)R-KO mice depending on its concentration. Carbachol did not cause contraction but instead caused relaxation of colonic strips from M(2)/M(3)R-KO mice. 4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2-butyn-1-aminium chloride (McN-A-343) caused a non-sustained contraction of colonic strips from wild-type mice, and this contraction was changed to a sustained contraction by tetrodotoxin, pirenzepine and L-nitroarginine methylester (L-NAME). In the colon of M(2)/M(3)R-KO mice, McN-A-343 caused only relaxation, which was decreased by tetrodotoxin, pirenzepine and L-NAME. In conclusion, M(1), M(2) and M(3) receptors regulate colonic motility of the mouse. M(2) and M(3) receptors mediate cholinergic contraction, but M(1) receptors on inhibitory nitrergic nerves counteract muscarinic contraction.


Subject(s)
Colon/drug effects , Colon/physiology , Gastrointestinal Motility , Receptors, Muscarinic/deficiency , Receptors, Muscarinic/metabolism , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride/pharmacology , Animals , Biomechanical Phenomena , Carbachol/pharmacology , Colon/metabolism , Defecation/drug effects , Female , Gastrointestinal Motility/drug effects , Gene Knockout Techniques , In Vitro Techniques , Male , Mice , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Pirenzepine/pharmacology , Receptors, Muscarinic/genetics
3.
J Pharmacol Exp Ther ; 330(2): 487-93, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19429792

ABSTRACT

The potential functional roles of M(3) muscarinic receptors in mouse atria were examined by pharmacological and molecular biological techniques, using wild-type mice, muscarinic M(2) or M(3) receptor single knockout (M(2)KO, M(3)KO), and M(2) and M(3) muscarinic receptor double knockout mice (M(2)/M(3)KO). Real-time quantitative reverse transcriptase-polymerase chain reaction analysis showed that the M(2) receptor mRNA was expressed predominantly in mouse atria but that the M(1), M(3), M(4), and M(5) receptor subtypes were also expressed at low levels. Carbachol (10 nM-30 microM) decreased the spontaneous beating frequency of right atria isolated from wild-type mice. Studies with subtype-preferring antagonists and atria from M(2)KO mice confirmed that this activity is mediated by the M(2) receptor subtype. In left atria from wild-type mice, carbachol decreased the amplitude of electrical field stimulation-evoked contractions (negative inotropic action), but this inhibition was transient and was followed by a gradual increase in contraction amplitude (positive inotropic response). In atria from M(3)KO mice, the transient negative inotropic action of carbachol changed to a sustained negative inotropic action. In contrast, in atria from M(2)KO mice, carbachol showed only positive inotropic activity. In atria from M(2)/M(3) double KO mice, carbachol was devoid of any inotropic activity. These observations, complemented by functional studies with subtype-preferring antagonists, convincingly demonstrate that atrial M(3) muscarinic receptors mediate positive inotropic effects in mouse atria. Physiologically, this activity may serve to dampen the inhibitory effects of M(2) receptor activation on atrial contractility.


Subject(s)
Heart/physiology , Myocardial Contraction/physiology , Receptor, Muscarinic M3/deficiency , Receptor, Muscarinic M3/physiology , Animals , Cholinergic Agonists/pharmacology , Dose-Response Relationship, Drug , Female , Heart/drug effects , Heart Atria/drug effects , Heart Atria/metabolism , Male , Mice , Mice, Knockout , Myocardial Contraction/drug effects , Myocardium/metabolism , Receptor, Muscarinic M3/agonists
4.
Naunyn Schmiedebergs Arch Pharmacol ; 377(4-6): 503-13, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18071676

ABSTRACT

Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM-100 microM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (Emax) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration-response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pKb values for these muscarinic receptor antagonists correlated well with the known pKi values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 microg/kg, i.p. for 96 h), Emax values for carbachol were significantly decreased, but effective concentration that caused 50% of Emax values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 microM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via reverse transcription polymerase chain reaction. Carbachol also caused contraction of uterine strips isolated from M2KO mice, but the concentration-response curve was shifted to the right and downward compared with that for the corresponding wild-type mice. On the other hand, uterine strips isolated from M3KO and M2/M3 double KO mice were virtually insensitive to carbachol. In conclusion, although both M2 and M3 muscarinic receptors were expressed in the mouse uterus, carbachol-induced contractile responses were predominantly mediated by the M3 receptor. Activation of M2 receptors alone did not cause uterine contractions; however, M2 receptor activation enhanced M3 receptor-mediated contractions in the mouse uterus.


Subject(s)
Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Receptor, Muscarinic M2/drug effects , Receptor, Muscarinic M3/drug effects , Animals , Carbachol/administration & dosage , Cholinergic Agonists/administration & dosage , Dose-Response Relationship, Drug , Estrous Cycle , Female , Mice , Mice, Knockout , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Tetrodotoxin/pharmacology , Uterus/drug effects , Uterus/metabolism
5.
Eur J Pharmacol ; 554(2-3): 212-22, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17113073

ABSTRACT

Functional roles of muscarinic acetylcholine receptors in the regulation of mouse stomach motility were examined using mice genetically lacking muscarinic M(2) receptor and/or M(3) receptor and their corresponding wild-type (WT) mice. Single application of carbachol (1 nM-30 microM) produced concentration-dependent contraction in antral and fundus strips from muscarinic M(2) receptor knockout (M(2)R-KO) and M(3) receptor knockout (M(3)R-KO) mice but not in those from M(2) and M(3) receptors double knockout (M(2)/M(3)R-KO) mice. A comparison of the concentration-response curves with those for WT mice showed a significant decrease in the negative logarithm of EC(50) (pEC(50)) value (M(2)R-KO) or amplitude of maximum contraction (M(3)R-KO) in the muscarinic receptor-deficient mice. The tonic phase of carbachol-induced contraction was decreased in gastric strips from M(3)R-KO mice. Antagonistic affinity for 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) or 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) indicated that the contractile responses in M(2)R-KO and M(3)R-KO mice were mediated by muscarinic M(3) and M(2) receptors, respectively. Electrical field stimulation (EFS, 0.5-32 Hz) elicited frequency-dependent contraction in physostigmine- and N(omega)-nitro-L-arginine methylester (l-NAME)-treated fundic and antral strips from M(2)R-KO and M(3)R-KO mice, but the cholinergic contractile components decreased significantly compared with those in WT mice. In gastric strips from M(2)/M(3)R-KO mice, cholinergic contractions elicited by EFS were not observed but atropine-resistant contractions were more conspicuous than those in gastric strips from WT mice. Gastric emptying in WT mice and that in M(2)/M(3)R-KO mice were comparable, suggesting that motor function of the stomach in the KO mice did not differ from that in the WT mice. The results indicate that both muscarinic M(2) and M(3) receptors but not other subtypes mediate carbachol- or EFS-induced contraction in the mouse stomach but that the contribution of each receptor to concentration-response relationships is distinguishable. Although there was impairment of nerve-mediated cholinergic responses in the stomach of KO mice, gastric emptying in KO mice was the same as that in WT mice probably due to the compensatory enhancement of the non-cholinergic contraction pathway.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiology , Receptor, Muscarinic M2/physiology , Receptor, Muscarinic M3/physiology , Stomach/physiology , Animals , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , Enzyme Inhibitors/pharmacology , Female , Gastric Emptying/drug effects , Gastric Emptying/physiology , Gastric Fundus/drug effects , Gastric Fundus/physiology , Genotype , In Vitro Techniques , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Physostigmine/pharmacology , Piperidines/pharmacology , Pirenzepine/analogs & derivatives , Pirenzepine/pharmacology , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M3/genetics , Stomach/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...