Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 88(4): 399-404, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38271606

ABSTRACT

Kahalalides, originally isolated from the sacoglossan mollusk Elysia rufescens, have been found in various Elysia and Bryopsis species, with over 20 variants identified to date. These compounds are biosynthesized by Candidatus Endobryopsis kahalalidefaciens within Bryopsis species. In this study, we report the isolation and structural determination of a new cyclic depsipeptide, mebamamide C (1), from Bryopsis sp. The planar structure was determined by spectroscopic data analyses, and the absolute configurations were determined using Marfey's method and modified Mosher's method. Additionally, our study explores the chemical relationship between Bryopsis algae and Elysia mollusks. The individual chemical profiles of these marine organisms highlight a fascinating aspect of marine chemical ecology. The distinct, species-specific chemical profiles observed in Elysia species imply the possibility of a symbiotic relationship with the kahalalide-producing bacteria.


Subject(s)
Chlorophyta , Depsipeptides , Animals , Mollusca/chemistry , Depsipeptides/chemistry , Marine Biology
2.
J Nat Prod ; 86(11): 2539-2545, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37889636

ABSTRACT

Two kahalalide analogues were isolated from a Bryopsis sp. marine green alga. Even though our initial structure determination of the peptides by NMR and MS identified them as kahalalide Z1 (KZ1; 3) and Z2 (KZ2; 4), the absolute configuration of the Thr residues by Marfey's analysis was different from those found in kahalalide F (KF), 3, and 4. To ascertain the absolute configuration of the amino acid residues genetically, we conducted a metagenomic analysis for symbiotic bacteria in the alga, leading to the biosynthetic gene cluster (BGC) responsible for producing the kahalalides named kahalalides Z3 (KZ3; 1) and Z4 (KZ4; 2). The identification of amino acid residues based on the A-domain suggested these peptides possess the amino acid sequence d-allo-Thr-l-Val-l-Val-d-Val residues at the N-terminus, instead of the d-Val-l-Thr-l-Val-d-Val residues found in KF, 3, and 4. The N-terminal amino acid sequence including absolute configuration was unambiguously determined by a comparison of LCMS data of synthetic tetrapeptides and the hydrolysates derived from 1 and 2. This structural difference is caused by swapping the substrate specificities of the first two A-domains.


Subject(s)
Chlorophyta , Mollusca , Animals , Mollusca/chemistry , Chlorophyta/chemistry , Amino Acid Sequence , Magnetic Resonance Spectroscopy , Amino Acids , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...