Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(14): 23362-23371, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475421

ABSTRACT

We designed and fabricated grism structures on the end-face of an optical fiber and experimentally characterized them. A UV-curable ionic-liquid polymer resin, well-suited for nanoimprinting, was used to fabricate the grism structures with grating pitches of 1.8-3 µm and prism apex angle reaching 30-40°. The structures can propagate 1st order of diffraction peaks along the fiber axis at 520, 660, and 830 nm wavelengths. The experimental and numerically simulated results of far-field intensity distribution revealed high agreement. Hence, based on the numerical simulation, we proposed grism structure designs for in-line propagation of first-order diffraction at wavelengths of λ = 1300 - 2000 nm utilizing chalcogenide glass fibers.

2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674882

ABSTRACT

We present a method of microstructure fabrication on the tip of the optical fiber using a UV soft-imprint process of polymerizable ionic liquid-based optical resist. Ionic liquid with two UV-sensitive vinylbenzyl groups in the structure was diluted in non-hazardous propylene glycol (PG) to obtain liquid material for imprinting. No additional organic solvent was required. The impact of propylene glycol amount and exposure dose on optical and mechanical properties was investigated. The final procedure of the UV imprint on the optical fiber tip was developed, including the mold preparation, setup building, UV exposure and post-laser cure. As the IL-containing vinylbenzyl groups can also be polymerized by the radical rearrangement of double bonds through thermal heating, the influence of the addition of 1-2% BHT polymerization inhibitor was verified. As a result, we present the fabricated diffraction gratings and the optical fiber spectrometer component-grism (grating-prism), which allows obtaining a dispersion spectrum at the output of an optical in line with the optical fiber long axis, as the main component in an optical fiber spectrometer. The process is very simple due to the fact that its optimization already starts in the process of molecule design, which is part of the trend of sustainable technologies. The final material can be designed by the tailoring of the anion and/or cation molecule, which in turn can lead to a more efficient fabrication procedure and additional functionalities of the final structure.

3.
Appl Opt ; 61(21): 6128-6133, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-36256224

ABSTRACT

We report on the fabrication, experimental measurement, and numerical simulation of sol-gel diffraction grating structures deposited on the end-face of a single mode optical fiber. Using the imprint method, we manufactured surface relief grating structures in four configurations with different grating-relative-to-fiber arrangements. We demonstrate the high quality of the fabricated structures based on atomic force microscopy imaging and their operational characteristics, presenting measured and simulated far-field intensity distributions. Using a numerical model, we simulated the diffraction patterns in the far-field. We obtained strong agreement between the results of the simulations and the experiments in terms of the angular positions of the diffraction peaks. We also investigated the tolerance of fabricated structures to high-power lasers. Among the proposed structures, the most intriguing is the grism fabricated on a fiber end-face using sol-gel imprint technology for the first time, to the best of our knowledge.

4.
Langmuir ; 35(37): 11968-11978, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31442379

ABSTRACT

Planar photonic components can be fabricated with high resolution by electron beam patterning of polymer thin films on solid substrates such as silicon and glass. However, polymer films are normally formed by spin-coating lithographic resists containing not only polymers but also volatile solvents, which is a serious environmental and health issue. Therefore, we investigate a new type of material for planar structure fabrication (i.e., room-temperature ionic liquids (RTILs) with a polymerizable allyl group) that is electron-beam-curable, solvent-free, and thus potentially interesting for processing materials with weak resistance to solvents. We fabricate planar polymer microstructures by electron beam patterning of RTIL thin films in vacuum, which is possible because of the negligible volatility of ionic liquids. Three different polymerizable ionic liquids {i.e., [Allmim][Cl] (1-allyl-3-methylimidazolium chloride), [Allmim][NTf2] (1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), and [Allmmim][NTf2] (1-allyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide)} are compared in terms of the quality of the fabricated microstructures. We demonstrate that the shape of the more viscous RTIL with the Cl- anion is less distorted during electron-beam-activated polymerization than the shape of the less viscous RTILs with a large NTf2- anion. Furthermore, the surface tension of the NTf2-based ionic liquid decreases significantly with temperature as compared to that of the Cl-based ionic liquid. Thus, we suggest that the thermocapillary effect, that is, the Marangoni flow caused by a temperature gradient, might be responsible for the differences in the shape of the RTIL-derived microstructures. Also, we analyze the chemistry of the electron-beam-activated polymerization of RTIL by the use of Fourier-transform infrared spectroscopy (FTIR) and conclude that because of the disappearance of C═C bonds the free radical polymerization is a probable reaction mechanism. Finally, we show that polymerized microstructures are potentially attractive as planar photonic components because of good optical properties such as a high refractive index.

5.
Nanotechnology ; 29(47): 475202, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30198858

ABSTRACT

Electron beam patterning is an important technology in the fabrication of miniaturized photonic devices. The fabrication process conventionally involves the use of radiation sensitive polymer-based solutions (called resists). We propose to replace typical polymer resists with eco-friendly solvent-free room temperature ionic liquids (RTILs), which are polymerized in situ and solidified by an electron beam. It is demonstrated that the shapes of polymerized structures are different for high-viscous Cl-based RTILs and low-viscous NTf2-based RTILs. Due to the the satisfactory quality of the polymerized spatial microstructures and their light transmission properties, the RTIL-derived microstructures are potentially attractive as photonic elements for near-infrared.

6.
Opt Lett ; 39(16): 4942-5, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25121914

ABSTRACT

We demonstrate a new kind of single-mode micro-optical waveguide based on a liquid core on top of solid substrate and air cladding. The liquid is held in place by surface tension and patterned surface energy on the substrate. Due to the smooth nature of the liquid/air interface down to the molecular level, low scattering losses are expected. Losses were measured to be -6.0 and -7.8 dB/cm for, respectively, 12 and 9 µm wide waveguides.

7.
Opt Lett ; 37(22): 4681-3, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164878

ABSTRACT

Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.

8.
Opt Express ; 20(12): 12926-38, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714320

ABSTRACT

Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...