Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 12: 47, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25889296

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) is a major global health problem, causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Development of well-tolerated regimens with high cure rates and fewer side effects is still much needed. Recently, natural antimicrobial peptides (AMPs) are attracting more attention as biological compounds and can be a good template to develop therapeutic agents, including antiviral agents against a variety of viruses. Various AMPs have been characterized from the venom of different venomous animals including scorpions. METHODS: The possible antiviral activities of crude venoms obtained from five Egyptian scorpion species (Leiurus quinquestriatus, Androctonus amoreuxi, A. australis, A. bicolor and Scorpio maurus palmatus) were evaluated by a cell culture method using Huh7.5 cells and the J6/JFH1-P47 strain of HCV. Time-of-addition experiments and inactivation of enzymatic activities of the venoms were carried out to determine the characteristics of the anti-HCV activities. RESULTS: S. maurus palmatus and A. australis venoms showed anti-HCV activities, with 50% inhibitory concentrations (IC50) being 6.3 ± 1.6 and 88.3 ± 5.8 µg/ml, respectively. S. maurus palmatus venom (30 µg/ml) impaired HCV infectivity in culture medium, but not inside the cells, through virocidal effect. The anti-HCV activity of this venom was not inhibited by a metalloprotease inhibitor or heating at 60°C. The antiviral activity was directed preferentially against HCV. CONCLUSIONS: S. maurus palmatus venom is considered as a good natural source for characterization and development of novel anti-HCV agents targeting the entry step. To our knowledge, this is the first report describing antiviral activities of Egyptian scorpion venoms against HCV, and may open a new approach towards discovering antiviral compounds derived from scorpion venoms.


Subject(s)
Antiviral Agents/toxicity , Hepacivirus/drug effects , Hepatitis C/virology , Scorpion Venoms/toxicity , Animals , Hepacivirus/physiology , Humans , Scorpions/chemistry
2.
Microbiol Immunol ; 58(3): 188-94, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24438164

ABSTRACT

The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo-Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n-hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti-HCV activities with 50%-inhibitory concentrations (IC(50)) of 20.6, 6.1, and 6.6 µg/mL, respectively. Bioactivity-guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti-HCV compound present in the extracts (IC(50) = 0.3 µg/mL). It was also found that pyropheophorbide a possesses anti-HCV activity (IC(50) = 0.2 µg/mL). The 50%-cytotoxic concentrations (CC(50)) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 µg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti-HCV activities. Time-of-addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post-entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV.


Subject(s)
Antiviral Agents/pharmacology , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Hepacivirus/drug effects , Morinda/chemistry , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Chlorophyll/chemistry , Chlorophyll/pharmacology , Hepacivirus/physiology , Hepatitis C/virology , Humans , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry
3.
Microbiol Immunol ; 58(3): 180-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24397541

ABSTRACT

Development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still much needed from clinical and economic points of view. Antiviral substances obtained from medicinal plants are potentially good targets to study. Glycyrrhiza uralensis and G. glabra have been commonly used in both traditional and modern medicine. In this study, extracts of G. uralensis roots and their components were examined for anti-HCV activity using an HCV cell culture system. It was found that a methanol extract of G. uralensis roots and its chloroform fraction possess anti-HCV activity with 50%-inhibitory concentrations (IC(50)) of 20.0 and 8.0 µg/mL, respectively. Through bioactivity-guided purification and structural analysis, glycycoumarin, glycyrin, glycyrol and liquiritigenin were isolated and identified as anti-HCV compounds, their IC(50) being 8.8, 7.2, 4.6 and 16.4 µg/mL, respectively. However, glycyrrhizin, the major constituent of G. uralensis, and its monoammonium salt, showed only marginal anti-HCV activity. It was also found that licochalcone A and glabridin, known to be exclusive constituents of G. inflata and G. glabra, respectively, did have anti-HCV activity, their IC(50) being 2.5 and 6.2 µg/mL, respectively. Another chalcone, isoliquiritigenin, also showed anti-HCV activity, with an IC(50) of 3.7 µg/mL. Time-of-addition analysis revealed that all Glycyrrhiza-derived anti-HCV compounds tested in this study act at the post-entry step. In conclusion, the present results suggest that glycycoumarin, glycyrin, glycyrol and liquiritigenin isolated from G. uralensis, as well as isoliquiritigenin, licochalcone A and glabridin, would be good candidates for seed compounds to develop antivirals against HCV.


Subject(s)
Antiviral Agents/pharmacology , Glycyrrhiza/chemistry , Hepacivirus/drug effects , Hepatitis C/virology , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Glycyrrhiza/classification , Glycyrrhiza uralensis/chemistry , Hepacivirus/physiology , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry
4.
J Dermatol ; 37(7): 635-46, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20629830

ABSTRACT

We have previously shown that ectopic expression of metabotropic glutamate receptor subtype 1 in melanocytes is essential for both development and in vivo growth of melanoma using newly developed transgenic mice which conditionally express metabotropic glutamate receptor subtype 1 (mGluR1). In this study, we developed conditional transgenic mice, which harbor melanocytes not only in the dermis and hair follicles but also in the epidermis using stem cell factor transgenic mice. Pigmented plaques on the backs, tails, ears or groins of the transgenic mice began to appear 13 weeks after activation of the mGluR1 transgene, and the transgenic mice produced melanomas at a frequency of 100% 36 weeks after transgene activation. Although this transgenic mouse harbors melanocytes in the epidermis, proliferation of melanoma cells took place in the dermis. To elucidate the signals involved in development and growth of melanoma, inhibitors to phospholipase C, protein kinase C and mitogen-activated protein kinase kinase 1/2, and antagonists to Ca(2+) and calmodulin were administrated to transgenic mice. Each signal inhibitor to phospholipase, protein kinase C, Ca(2+) release, calmodulin and mitogen-activated protein kinase kinase 1/2 inhibited melanoma development. However, once melanoma was developed, the growth of melanoma was dramatically inhibited only by the inhibitor to mitogen-activated protein kinase kinase 1/2 with partial inhibition by inhibitors to protein kinase C and phospholipase C. This inhibition of melanoma growth was well correlated with the expression of phosphorylated extracellular signal-regulated kinase 1/2 and Ki-67. These results indicate that for development of melanoma, activation of every signaling pathway from mGluR1 is required. However, for growth of melanoma, the extracellular signal-regulated kinase pathway plays a key role.


Subject(s)
Melanoma/genetics , Receptors, Metabotropic Glutamate/genetics , Skin Neoplasms/genetics , Animals , Calmodulin/antagonists & inhibitors , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , Melanoma/enzymology , Melanoma/pathology , Mice , Mice, Transgenic , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Stem Cell Factor/genetics , Type C Phospholipases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...