Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 924: 171612, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38462010

ABSTRACT

Various plant functional groups (PFGs) used in the reclamation of post-mining heaps may differ in their nutrient uptake efficiency and thus in their effect on the ecosystem development. The effect of PFGs may be additionally modified by the applied reclamation measures such as e.g. topsoiling. In this study we compared the nutrient uptake efficiencies and plant stoichiometry for two PFGs (grasses and forbs) growing on the sites reclaimed by applying topsoil (TS) and unreclaimed sites on carboniferous bare rock (BR) in hard coal spoil heap in Upper Silesia (southern Poland). Basic soil parameters, including pH, texture, soil organic carbon, and nutrients (N, P, K, Ca, and Mg), were measured, and the aboveground plant biomass and nutrient content in plant tissue were determined. Forbs were characterized by a larger biomass and higher nutrient concentrations (except for P) than grasses. The TS treatment supported higher concentrations of N and P in plant tissues but not to the level ensuring more significant primary biomass production. The nutrient concentration and elemental stoichiometry in plant tissue indicated that N was the primary limiting element. However, the major growth limitation for N-fixing forbs was from P. Forbs were much more efficient in nutrient uptake than grasses, independent of the reclamation treatment. Therefore, they stimulate nutrient cycling in the restored ecosystems more than grasses.


Subject(s)
Coal Mining , Ecosystem , Poland , Carbon , Soil/chemistry , Plants , Poaceae
2.
Sci Rep ; 11(1): 11969, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099779

ABSTRACT

The study aimed to evaluate the parameters of reproductive traits, specimens' fertility and reproductive efficiency observed in Betula pendula populations growing at different types of sites (zinc-lead heaps, coal mine heaps and unpolluted site). The leaf biomass and the biometric characteristics of inflorescences and fructifications were identified. Moreover, the biometric parameters of B. pendula seedlings were evaluated for examined sites. Seed-originated trees mostly of age 40 were randomly selected and from each tree, a branches from 1.70 m height and orientation N-S, W-E to the cardinal points of the stem were chosen. In the laboratory, selected soil parameters, the viability of pollen and the seeding value of seeds were analysed. According to the multidimensional statistical analysis the populations of B. pendula growing on post-industrial wastelands represent different morphotypes with lower values of almost all the reproductive traits, compared to the unpolluted birch population. Such traits as the male:female catkin number ratio and the non-embryo seed number were positively correlated with the heavy metal content at the zinc-lead heaps; at the same time these traits were negatively correlated with soil fertility. The fully developed seed number and the mature female catkin number were strongly correlated with the available potassium and phosphorus soil content but also with the leaf number on the generative shoots. The specimens of birch growing in these three habitats did not develop a universal reproductive strategy. Some differences in fecundity, the condition of seeds and the patterns of seed germination were found. The resulting seedling survival is determined by the plasticity of biometric traits, sheltered places for germination, etc. Seedlings that originated from heaps (local gene resources) are more suitable for use in the reclamation of large amounts of waste.


Subject(s)
Betula/metabolism , Plant Leaves/chemistry , Reproduction/physiology , Betula/classification , Betula/genetics , Biomass , Ecosystem , Environment , Environmental Exposure , Fertilization , Germination , Industrial Waste , Metals, Heavy/chemistry , Phosphorus/chemistry , Phosphorus/metabolism , Potassium/chemistry , Potassium/metabolism , Seedlings , Soil
3.
Sci Rep ; 11(1): 5155, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664356

ABSTRACT

Knowledge about biotic (plant species diversity, biomass) and/or abiotic (physicochemical substrate parameters) factors that determine enzyme activity and functional diversity of the substrate on hard coal spoil heaps is limited. Spontaneously developed vegetation patches dominated by herbaceous species commonly occurring on these spoil heaps: grasses (Poa compressa, Calamagrostis epigejos) and forbs (Daucus carota, Tussilago farfara), were examined. The activity of dehydrogenase and alkaline phosphatase was twice as high in plots dominated by grass species compared with those dominated by forbs. Significant positive correlations were found between the activity of dehydrogenase and alkaline phosphatase with pH, available P, soil moisture, and water holding capacity and negative correlations between the activity of urease and soil organic carbon. Strong positive correlations were found between values for Shannon-Wiener diversity index, evenness, species richness and soil functional diversity in plots dominated by grasses. We found that the soil physicochemical parameters had a greater impact on enzyme activity of the substrate than plant biomass and species diversity. However, grasses, through their extensive root system, more effectively increased enzyme activity and health of the substrate than other herbaceous species, and as they stabilize the substrate and form dense plant cover, they can be recommended for reclamation purposes.

4.
Photosynth Res ; 136(3): 329-343, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29185137

ABSTRACT

In natural conditions, plants growth and development depends on environmental conditions, including the availability of micro- and macroelements in the soil. Nutrient status should thus be examined not by establishing the effects of single nutrient deficiencies on the physiological state of the plant but by combinations of them. Differences in the nutrient content significantly affect the photochemical process of photosynthesis therefore playing a crucial role in plants growth and development. In this work, an attempt was made to find a connection between element content in (i) different soils, (ii) plant leaves, grown on these soils and (iii) changes in selected chlorophyll a fluorescence parameters, in order to find a method for early detection of plant stress resulting from the combination of nutrient status in natural conditions. To achieve this goal, a mathematical procedure was used which combines principal component analysis (a tool for the reduction of data complexity), hierarchical k-means (a classification method) and a machine-learning method-super-organising maps. Differences in the mineral content of soil and plant leaves resulted in functional changes in the photosynthetic machinery that can be measured by chlorophyll a fluorescent signals. Five groups of patterns in the chlorophyll fluorescent parameters were established: the 'no deficiency', Fe-specific deficiency, slight, moderate and strong deficiency. Unfavourable development in groups with nutrient deficiency of any kind was reflected by a strong increase in F o and ΔV/Δt 0 and decline in φ Po, φ Eo δ Ro and φ Ro. The strong deficiency group showed the suboptimal development of the photosynthetic machinery, which affects both PSII and PSI. The nutrient-deficient groups also differed in antenna complex organisation. Thus, our work suggests that the chlorophyll fluorescent method combined with machine-learning methods can be highly informative and in some cases, it can replace much more expensive and time-consuming procedures such as chemometric analyses.


Subject(s)
Brassica rapa/physiology , Chlorophyll/analysis , Food , Soil/chemistry , Chlorophyll A , Fluorescence , Photosynthesis/physiology , Plant Leaves/physiology , Principal Component Analysis , Stress, Physiological
5.
PLoS One ; 11(6): e0156201, 2016.
Article in English | MEDLINE | ID: mdl-27275605

ABSTRACT

The aim of this study was to understand the acclimatization mechanisms of photosynthetic apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve populations differentiated by age: young (30-50 years old), intermediate age (ca. 100 y) and old (>300 y) were studied. It was confirmed that the decrease of the number of genotypes as a result of environmental stress and competition were reflected in changes in chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few genotypes which seem to be the best acclimatized to the self-shading/competition by lowering their photosynthetic performance during light-phase of photosynthesis. On the other hand, the 'high-speed' photosynthetic rate observed in the young populations can be seen as acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a powerful method of inferring physiological mechanisms of the expansion of tor grass. The Principal Component and Redundancy Analyses, followed with k-means classification, allowed to find the differentiation of groups of distinct ChlF parameters and enabled us to relate them to changes in genotypic diversity of populations. We conclude that the plastic morphological and physiological response to changeable habitat light conditions with its optimum in half-shade refers to its forest-steppe origin.


Subject(s)
Acclimatization/physiology , Brachypodium/physiology , Forests , Grassland , Photosynthesis/physiology , Photosynthetic Reaction Center Complex Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...