Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(8): 083801, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36898103

ABSTRACT

We observe linear and nonlinear light localization at the edges and in the corners of truncated moiré arrays created by the superposition of periodic mutually twisted at Pythagorean angles square sublattices. Experimentally exciting corner linear modes in the femtosecond-laser written moiré arrays we find drastic differences in their localization properties in comparison with the bulk excitations. We also address the impact of nonlinearity on the corner and bulk modes and experimentally observe the crossover from linear quasilocalized states to the surface solitons emerging at the higher input powers. Our results constitute the first experimental demonstration of localization phenomena induced by truncation of periodic moiré structures in photonic systems.

2.
Phys Rev Lett ; 128(9): 093901, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302806

ABSTRACT

We report the experimental observation of nonlinear light localization and edge soliton formation at the edges of fs-laser written trimer waveguide arrays, where transition from nontopological to topological phases is controlled by the spacing between neighboring trimers. We found that, in the former regime, edge solitons occur only above a considerable power threshold, whereas in the latter one they bifurcate from linear states. Edge solitons are observed in a broad power range where their propagation constant falls into one of the topological gaps of the system, while partial delocalization is observed when considerable nonlinearity drives the propagation constant into an allowed band, causing coupling with bulk modes. Our results provide direct experimental evidence of the coexistence and selective excitation in the same or in different topological gaps of two types of topological edge solitons with different internal structures, which can rarely be observed even in nontopological systems. This also constitutes the first experimental evidence of formation of topological solitons in a nonlinear system with more than one topological gap.

3.
Sci Rep ; 8(1): 597, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330510

ABSTRACT

Targeting micrometer sized metal droplets with near-infrared sub-picosecond laser pulses generates intense stress-confined acoustic waves within the droplet. Spherical focusing amplifies their pressures. The rarefaction wave nucleates cavitation at the center of the droplet, which explosively expands with a repeatable fragmentation scenario resulting into high-speed jetting. We predict the number of jets as a function of the laser energy by coupling the cavitation bubble dynamics with Rayleigh-Taylor instabilities. This provides a path to control cavitation and droplet shaping of liquid metals in particular for their use as targets in extreme-UV light sources.

4.
Phys Rev E ; 95(3-1): 031101, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415266

ABSTRACT

The deformation and fragmentation of liquid metal microdroplets by intense subpicosecond Ti:sapphire laser pulses is experimentally studied with stroboscopic shadow photography. The experiments are performed at a peak intensity of 10^{14}W/cm^{2} at the target's surface, which produces shock waves with pressures in the Mbar range. As a result of such a strong impact, the droplet is transformed into a complex-shaped hollow structure that undergoes asymmetrical expansion and eventually fragments. The hollow structure of the expanding target is explained by the effects of cavitation and spallation that follow the propagation of the laser-induced shock wave.

5.
Photosynth Res ; 133(1-3): 289-295, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28205063

ABSTRACT

Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.


Subject(s)
Bacteriochlorophylls/metabolism , Carotenoids/metabolism , Ectothiorhodospira/metabolism , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Spectrometry, Fluorescence
6.
Opt Express ; 23(22): 29202-10, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561190

ABSTRACT

A giant blue shift (more than 3000 nm) of an isolated visible band of supercontinuum was discovered and studied in the single filament regime of Mid-IR femtosecond laser pulse at powers slightly exceeding critical power for self-focusing in fluorides. At the pulse central wavelength increasing from 3000 nm to 3800 nm the spectral maximum of the visible band is shifted from 570 nm and 520 nm up to 400 nm and 330 nm for BaF(2) and CaF(2), respectively, its spectral width (FWHM) being reduced from 50 - 70 nm to 14 nm. It is shown that the formation of this narrow visible wing is a result of the interference of the supercontinuum components in the anomalous group velocity dispersion regime.

7.
Opt Express ; 22(25): 31002-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607049

ABSTRACT

We present the experimental results of diffraction-induced temporal splitting of chirped femtosecond optical pulses under the dynamical Bragg diffraction in the Laue geometry. For the experiments we made a transparent, high quality porous-quartz based 1D photonic crystal composed of 500 layers. We demonstrate that a selective compression of pulses is observed in this case, that is only one pulse from the pair is compressed, while the second one is broadened. This selective compression effect is determined by the sign and the value of the chirp parameter of the input pulse, in agreement with the theoretical description.

8.
Opt Lett ; 38(1): 16-8, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23282823

ABSTRACT

We have demonstrated that in the IR pulse filament the anomalous dispersion of fused silica leads to the formation of an isolated anti-Stokes wing (ASW), which is located in the visible region of the supercontinuum (SC). It is shown that the isolated ASW is formed by the interference of the light field of a SC undergoing anomalous group velocity dispersion.

SELECTION OF CITATIONS
SEARCH DETAIL
...