Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 67(5): 1486-1490, 2017 May.
Article in English | MEDLINE | ID: mdl-27983475

ABSTRACT

A moderately thermophilic, anaerobic bacterium designated as strain KRT was isolated from a shallow-water submarine hydrothermal vent (Kunashir Island, Southern Kurils, Russia). Cells of strain KRT were thin (0.2-0.3 µm), flexible, motile, Gram-stain-negative rods of variable length. Optimal growth conditions were pH 6.6, 55 °C and 1-3 % (w/v) NaCl. Strain KRT was able to ferment a wide range of proteinaceous substrates, pyruvate, and mono-, di- and polysaccharides. The best growth occurred with proteinaceous compounds. Nitrate significantly stimulated the growth on proteinaceous substrates decreasing H2 formation, ammonium being the main product of nitrate reduction. Strain KRT did not need the presence of a reducing agent in the medium and tolerated the presence of oxygen in the gas phase up to 3 % (v/v). In the presence of nitrate, aerotolerance of isolate KRT was enhanced up to 6-8 % O2 (v/v). Strain KRT was able to grow chemolithoheterotrophically, oxidizing H2 and reducing nitrate to ammonium. Yeast extract (0.05 g l-1) was required for growth. The G+C content of the genomic DNA of strain KRT was 47.3 mol%. 16S rRNA gene sequence analysis placed isolate KRT in the phylum Calditrichaeota where it represented a novel species of a new genus, for which the name Calorithrix insularis gen. nov., sp. nov. is proposed. The type strain of Calorithrix insularis is KRT (=DSM 101605T=VKM B-3022T).


Subject(s)
Bacteria, Anaerobic/classification , Hydrothermal Vents/microbiology , Phylogeny , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Gram-Negative Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Russia , Sequence Analysis, DNA
2.
Int J Syst Evol Microbiol ; 62(Pt 12): 2962-2966, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22286907

ABSTRACT

Two strains of purple non-sulfur bacteria (A-36s(T) and A-51s) were isolated from brackish steppe soda lakes of southern Siberia. Genetically, the isolates were related most closely to the type strains of Rhodovulum steppense and Rhodovulum strictum, from which they differed at the species level (98.5% 16S rRNA gene sequence similarity, 40-53% DNA-DNA relatedness). Cells of the two strains were ovoid to rod-shaped, 0.4-0.8 µm wide and 1.0-2.5 µm long, and motile by means of a polar flagellum. They contained internal photosynthetic membranes of vesicular type and photosynthetic pigments (bacteriochlorophyll a and carotenoids of the spheroidene series). The strains were obligate haloalkaliphiles, growing over wide ranges of salinity (0.3-10.0% NaCl) and pH (7.5-10.0), with growth optima at 1.0-3.0% NaCl and pH 8.5-9.0. Photoheterotrophic and chemoheterotrophic growth occurred with a number of organic compounds and biotin, p-aminobenzoate, thiamine and niacin as growth factors. No anaerobic respiration on nitrite, nitrate or fumarate and no fermentation were demonstrated. The strains grew photolithoautotrophically and chemolithoautotrophically with sulfide, sulfur and thiosulfate, oxidizing them to sulfate. Sulfide was oxidized via deposition of extracellular elemental sulfur. No growth with H(2) as the electron donor was observed. The major fatty acid was C(18:1) (78%). The major quinone was ubiquinone Q-10. The DNA G+C content of strain A-36s(T) was 65.4 mol% (T(m)). According to genotypic and phenotypic characteristics, the investigated strains were assigned to a novel species of the genus Rhodovulum, for which the name Rhodovulum tesquicola sp. nov. is proposed. The type strain is A-36s(T) ( = VKM B-2491(T) = ATCC BAA-1573(T)), which was isolated from steppe soda lake Sul'fatnoe (Zabaikal'skii Krai, southern Siberia, Russia).


Subject(s)
Lakes/microbiology , Phylogeny , Rhodovulum/classification , Water Microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Rhodovulum/genetics , Rhodovulum/isolation & purification , Sequence Analysis, DNA , Siberia , Sulfates/metabolism , Ubiquinone/analysis
3.
J Colloid Interface Sci ; 360(1): 100-9, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21549386

ABSTRACT

Electrophoretic mobility measurements and surface adsorption of Ca on living, inactivated, and heat-killed haloalkaliphilic Rhodovulum steppense, A-20s, and halophilic Rhodovulum sp., S-17-65 anoxygenic phototrophic bacteria (APB) cell surfaces were performed to determine the degree to which these bacteria metabolically control their surface potential equilibria. Zeta potential of both species was measured as a function of pH and ionic strength, calcium and bicarbonate concentrations. For both live APB in 0.1M NaCl, the zeta potential is close to zero at pH from 2.5 to 3 and decreases to -30 to -40 mV at pH of 5-8. In alkaline solutions, there is an unusual increase of zeta potential with a maximum value of -10 to -20 mV at a pH of 9-10.5. This increase of zeta potential in alkaline solutions is reduced by the presence of NaHCO(3) (up to 10 mM) and only slightly affected by the addition of equivalent amount of Ca. At the same time, for inactivated (exposure to NaN(3), a metabolic inhibitor) and heat-killed bacteria cells, the zeta potential was found to be stable (-30 to -60 mV, depending upon the ionic strength) between pH 5 and 11 without any increase in alkaline solutions. Adsorption of Ca ions on A-20s cells surface was more significant than that on S-17-65 cells and started at more acidic pHs, consistent with zeta potential measurements in the presence of 0.001-0.01 mol/L CaCl(2). Overall, these results indicate that APB can metabolically control their surface potential to electrostatically attract nutrients at alkaline pH, while rejecting/avoiding Ca ions to prevent CaCO(3) precipitation in the vicinity of cell surface and thus, cell incrustation.


Subject(s)
Calcium Carbonate/chemistry , Calcium/chemistry , Rhodovulum/chemistry , Adsorption , Rhodovulum/cytology , Solutions , Surface Properties
4.
Int J Syst Evol Microbiol ; 60(Pt 5): 1210-1214, 2010 May.
Article in English | MEDLINE | ID: mdl-19667383

ABSTRACT

Seven strains of purple nonsulfur bacteria isolated from the shallow-water steppe soda lakes of the cryoarid zone of Central Asia formed a genetically homogeneous group within the genus Rhodovulum. The isolates were most closely related to Rhodovulum strictum, from which they differed at the species level (99.5 % 16S rRNA gene identity and 42-44 % DNA-DNA hybridization level). According to genotypic and phenotypic characteristics, the strains were assigned to a new species of the genus Rhodovulum, for which the name Rhodovulum steppense sp. nov. is proposed. Cells of all strains were ovoid to rod-shaped, 0.3-0.8 microm wide and 1-2.5 microm long, and motile by means of polar flagella. They contained internal photosynthetic membranes of the vesicular type and photosynthetic pigments (bacteriochlorophyll a and carotenoids of the spheroidene series). All strains were obligate haloalkaliphiles, growing within a wide range of salinity (0.3-10 %) and pH (7.5-10), with growth optima at 1-5 % NaCl and pH 8.5. Photo- and chemoheterotrophic growth occurred with a number of organic compounds and biotin, thiamine and niacin as growth factors. No anaerobic respiration on nitrite, nitrate or fumarate and no fermentation was demonstrated. Bacteria grew photo- and chemolithoautotrophically with sulfide, sulfur and thiosulfate, oxidizing them to sulfate. Sulfide was oxidized via deposition of extracellular elemental sulfur. No growth with H(2) as electron donor was demonstrated. The major fatty acid was 18 : 1 (81.0 %). The major quinone was Q-10. The DNA G+C content was 66.1 mol% (T(m)). The type strain, A-20s(T) (=VKM B-2489(T) =DSM 21153(T)), was isolated from soda lake Khilganta (Zabaikal'skii Krai, southern Siberia, Russia).


Subject(s)
Fresh Water/microbiology , Rhodospirillaceae/classification , Rhodospirillaceae/growth & development , Rhodovulum/classification , Rhodovulum/growth & development , Sodium Chloride , Asia, Central , Bacterial Typing Techniques , Chemoautotrophic Growth , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Genes, rRNA , Genotype , Hydrogen-Ion Concentration , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Phototrophic Processes , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhodospirillaceae/genetics , Rhodospirillaceae/isolation & purification , Rhodovulum/genetics , Rhodovulum/isolation & purification , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...