Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38050960

ABSTRACT

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Subject(s)
Escherichia coli , Mycoplasma mycoides , RNA, Bacterial , RNA, Transfer, Gly , Anticodon/genetics , Base Sequence , Codon/genetics , Escherichia coli/genetics , Glycine/genetics , RNA, Transfer/genetics , RNA, Transfer, Gly/genetics , Mycoplasma mycoides/genetics , Mycoplasma mycoides/metabolism , RNA, Bacterial/genetics
2.
Nucleic Acids Res ; 51(1): 271-289, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36546769

ABSTRACT

During initiation, the ribosome is tasked to efficiently recognize open reading frames (ORFs) for accurate and fast translation of mRNAs. A critical step is start codon recognition, which is modulated by initiation factors, mRNA structure, a Shine Dalgarno (SD) sequence and the start codon itself. Within the Escherichia coli genome, we identified more than 50 annotated initiation sites harboring AUGUG or GUGUG sequence motifs that provide two canonical start codons, AUG and GUG, in immediate proximity. As these sites may challenge start codon recognition, we studied if and how the ribosome is accurately guided to the designated ORF, with a special focus on the SD sequence as well as adenine at the fourth coding sequence position (A4). By in vitro and in vivo experiments, we characterized key requirements for unambiguous start codon recognition, but also discovered initiation sites that lead to the translation of both overlapping reading frames. Our findings corroborate the existence of an ambiguous translation initiation mechanism, implicating a multitude of so far unrecognized ORFs and translation products in bacteria.


Subject(s)
Escherichia coli , Protein Biosynthesis , Codon, Initiator , Escherichia coli/genetics , Escherichia coli/metabolism , Codon , RNA, Messenger/metabolism , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL
...