Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 29(5): 1618-26, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23305163

ABSTRACT

Ordered mesoporous silica materials with a spherical morphology have been prepared for the first time through the cooperative templating mechanism (CTM) by using a silicone triblock copolymer as template. The behavior of the pure siloxane copolymer amphiphile in water was first investigated. A direct micellar phase (L(1)) and a hexagonal (H(1)) liquid crystal were found. The determination of the structural parameters by SAXS measurements leads us to conclude that in the hexagonal liquid crystal phase a part of the ethylene oxide group is not hydrated as observed for the micelles. Mesoporous materials were then synthesized from the cooperative templating mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorption-desorption analysis, and transmission and scanning electron microscopy. The results clearly evidence that one can control the morphology and the nanostructuring of the resulting material by modifying the synthesis parameters. Actually, highly ordered mesoporous materials with a spherical morphology have been obtained with a siloxane copolymer/tetramethoxysilane molar ratio of 0.10 after hydrothermal treatment at 100 °C. Our study also supports the fact that the interactions between micelles and the hydrolyzed precursor are one of the key parameters governing the formation of ordered mesostructures through the cooperative templating mechanism. Indeed, we have demonstrated that when the interactions between micelles are important, only wormhole-like structures are recovered.


Subject(s)
Polymers/chemistry , Silicon Dioxide/chemistry , Siloxanes/chemistry , Surface-Active Agents/chemistry , Liquid Crystals/chemistry , Micelles , Particle Size , Porosity , Silicon Dioxide/chemical synthesis , Surface Properties
2.
Adv Colloid Interface Sci ; 117(1-3): 59-74, 2005 Dec 14.
Article in English | MEDLINE | ID: mdl-16253203

ABSTRACT

This article is a review of some results obtained by Differential Scanning Calorimetry (DSC) for characterizing the morphology of emulsions. In a classical DSC experiment, an emulsion sample is submitted to a regular cooling and heating cycle between temperatures that include freezing and melting of the dispersed droplets. By using the thermograms found in the literature for various emulsions, how to get information about the solidification and melting, the presence of solute, the emulsion type, the transfer of matter, the stability and the droplet size is shown.


Subject(s)
Calorimetry, Differential Scanning , Emulsions/chemistry , Models, Theoretical , Temperature , Time , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...