Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Health Prev Med ; 25(1): 16, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460744

ABSTRACT

Well water could be a stable source of drinking water. Recently, the use of well water as drinking water has been encouraged in developing countries. However, many kinds of disorders caused by toxic elements in well drinking water have been reported. It is our urgent task to resolve the global issue of element-originating diseases. In this review article, our multidisciplinary approaches focusing on oncogenic toxicities and disturbances of sensory organs (skin and ear) induced by arsenic and barium are introduced. First, our environmental monitoring in developing countries in Asia showed elevated concentrations of arsenic and barium in well drinking water. Then our experimental studies in mice and our epidemiological studies in humans showed arsenic-mediated increased risks of hyperpigmented skin and hearing loss with partial elucidation of their mechanisms. Our experimental studies using cultured cells with focus on the expression and activity levels of intracellular signal transduction molecules such as c-SRC, c-RET, and oncogenic RET showed risks for malignant transformation and/or progression arose from arsenic and barium. Finally, our original hydrotalcite-like compound was proposed as a novel remediation system to effectively remove arsenic and barium from well drinking water. Hopefully, comprehensive studies consisting of (1) environmental monitoring, (2) health risk assessments, and (3) remediation will be expanded in the field of environmental health to prevent various disorders caused by environmental factors including toxic elements in drinking water.


Subject(s)
Arsenic/toxicity , Barium/toxicity , Drinking Water/analysis , Environmental Exposure , Water Pollutants, Chemical/toxicity , Animals , Environmental Health , Environmental Monitoring , Humans , Mice , Water Wells
2.
Arch Toxicol ; 93(11): 3219-3228, 2019 11.
Article in English | MEDLINE | ID: mdl-31576414

ABSTRACT

A previous study showed that people living in urban areas are generally exposed to low-frequency noise (LFN) with frequencies below 100 Hz and sound levels of 60-110 dB in daily and occupational environments. Exposure to LFN has been shown to affect balance in humans and mice. However, there is no information about prevention of LFN-mediated imbalance because of a lack of information about the target region based on health risk assessment of LFN exposure. Here, we show that acute exposure to LFN at 100 Hz, 95 dB, but not at 85 dB or 90 dB, for only 1 h caused imbalance in mice. The exposed mice also had decreased cervical vestibular-evoked myogenic potential (cVEMP) with impaired activity of vestibular hair cells. Since imbalance in the exposed mice was irreversible, morphological damage in the vestibules of the exposed mice was further examined. The exposed mice had breakage of the otoconial membrane in the vestibule. LFN-mediated imbalance and breakage of the otoconial membrane in mice were rescued by overexpression of a stress-reactive molecular chaperone, heat shock protein 70 (Hsp70), which has been shown to be induced by exposure of mice to 12 h per day of LFN at 95 dB for 5 days. Taken together, the results of this study demonstrate that acute exposure to LFN at 100 Hz, 95 dB for only 1 h caused irreversible imbalance in mice with structural damage of the otoconial membrane as the target region for LFN-mediated imbalance, which can be rescued by Hsp70.


Subject(s)
Environmental Exposure/adverse effects , Evoked Potentials, Auditory/physiology , HSP70 Heat-Shock Proteins/metabolism , Noise/adverse effects , Sensation Disorders/metabolism , Vestibule, Labyrinth/metabolism , Acoustic Stimulation , Animals , Environmental Exposure/analysis , HSP70 Heat-Shock Proteins/genetics , Mice , Mice, Inbred ICR , Mice, Transgenic , Otolithic Membrane/metabolism , Postural Balance/physiology , Sensation Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...