Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 961: 176190, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37952563

ABSTRACT

Sleep disorders are associated with increased risk of obesity and type 2 diabetes. Lemborexant, a dual orexin receptor antagonist (DORA), is clinically used to treat insomnia. However, the influence of lemborexant on sleep and glucose metabolism in type 2 diabetic state has remained unknown. In the present study, we investigated the effect of lemborexant in type 2 diabetic db/db mice exhibiting both sleep disruption and glucose intolerance. Single administration of lemborexant at the beginning of the light phase (i.e., resting phase) acutely increased total time spent in non-rapid eye movement (NREM) and REM sleep in db/db mice. Durations of NREM sleep-, REM sleep-, and wake-episodes were also increased by this administration. Daily resting-phase administration of lemborexant for 3-6 weeks improved glucose tolerance without changing body weight and glucose-stimulated insulin secretion in db/db mice. Similar improvement of glucose tolerance was caused by daily resting-phase administration of lemborexant in obese C57BL/6J mice fed high fat diet, whereas no such effect was observed in non-diabetic db/m+ mice. Diabetic db/db mice treated daily with lemborexant exhibited increased locomotor activity in the dark phase (i.e., awake phase), although they did not show any behavioral abnormality in the Y-maze, elevated plus maze, and forced swim tests. These results suggest that timely promotion of sleep by lemborexant improved the quality of wakefulness in association with increased physical activity during the awake phase, and these changes may underlie the amelioration of glucose metabolism under type 2 diabetic conditions.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Sleep , Glucose/pharmacology
2.
Cell Rep ; 41(3): 111497, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261021

ABSTRACT

Non-alcoholic steatohepatitis (NASH) occasionally occurs under obesity; however, factors modulating the natural history of fatty liver disease remain unknown. Since hypothalamic orexin that regulates physical activity and autonomic balance prevents obesity, we investigate its role in NASH development. Male orexin-deficient mice fed a high-fat diet (HFD) show severe obesity and progression of NASH with fibrosis in the liver. Hepatic fibrosis also develops in ovariectomized orexin-deficient females fed an HFD but not ovariectomized wild-type controls. Moreover, long-term HFD feeding causes hepatocellular carcinoma (HCC) in orexin-deficient mice. Intracerebroventricular injection of orexin A or pharmacogenetic activation of orexin neurons acutely activates hepatic mTOR-sXbp1 pathway to prevent endoplasmic reticulum (ER) stress, a NASH-causing factor. Daily supplementation of orexin A attenuates hepatic ER stress and inflammation in orexin-deficient mice fed an HFD, and autonomic ganglionic blocker suppresses the orexin actions. These results suggest that hypothalamic orexin is an essential factor for preventing NASH and associated HCC under obesity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Female , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Carcinoma, Hepatocellular/prevention & control , Orexins , Liver Neoplasms/prevention & control , Obesity/complications , TOR Serine-Threonine Kinases
3.
Int J Biol Sci ; 18(5): 1852-1864, 2022.
Article in English | MEDLINE | ID: mdl-35342343

ABSTRACT

Ebselen, a multifunctional organoselenium compound, has been recognized as a potential treatment for diabetes-related disorders. However, the underlying mechanisms whereby ebselen regulates metabolic pathways remain elusive. We discovered that ebselen inhibits lipid phosphatase SHIP2 (Src homology 2 domain-containing inositol-5-phosphatase 2), an emerging drug target to ameliorate insulin resistance in diabetes. We found that ebselen directly binds to and inhibits the catalytic activity of the recombinant SHIP2 phosphatase domain and SHIP2 in cultured cells, the skeletal muscle and liver of the diabetic db/db mice, and the liver of the SHIP2 overexpressing (SHIP2-Tg) mice. Ebselen increased insulin-induced Akt phosphorylation in cultured myotubes, enhanced insulin sensitivity and protected liver tissue from lipid peroxidation and inflammation in the db/db mice, and improved glucose tolerance more efficiently than metformin in the SHIP2-Tg mice. SHIP2 overexpression abrogated the ability of ebselen to induce glucose uptake and reduce ROS production in myotubes and blunted the effect of ebselen to inhibit SHIP2 in the skeletal muscle of the SHIP2-Tg mice. Our data reveal ebselen as a potent SHIP2 inhibitor and demonstrate that the ability of ebselen to ameliorate insulin resistance and act as an antioxidant is at least in part mediated by the reduction of SHIP2 activity.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Animals , Diabetes Mellitus, Experimental/drug therapy , Inflammation/drug therapy , Insulin/metabolism , Isoindoles , Mice , Organoselenium Compounds , Oxidative Stress , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Signal Transduction
4.
Obesity (Silver Spring) ; 29(11): 1857-1867, 2021 11.
Article in English | MEDLINE | ID: mdl-34472713

ABSTRACT

OBJECTIVE: Orexin/hypocretin (Ox) and its receptors (OxR), a neuroendocrine system centrally regulating sleep/wakefulness, were implicated in the regulation of peripheral metabolism. It was hypothesized that human adipose tissue constitutes a direct target of the OxA/OxR system that associates with distinct metabolic profile(s). METHODS: Serum Ox levels and abdominal subcutaneous and visceral adipose tissue expression of Ox/HCRT, OxR1/HCRTR1, and OxR2/HCRTR2 were measured in n = 81 patients. RESULTS: Higher morning circulating Ox levels were associated with improved lipid profile and insulin sensitivity, independently of BMI (ß = -0.363, p = 0.018 for BMI-adjusted homeostatic model of insulin resistance). Adipose HCRT mRNA was detectable in <20% of patients. Visceral HCRT expressers were mostly (80%) males and, compared with nonexpressers, had lower total and LDL cholesterol. HCRTR1 was readily detectable, and HCRTR2 was undetectable. HCRTR1 mRNA and OxR1 protein expression were higher in subcutaneous than visceral adipose tissue, and among nonobese patients, patients with obesity, and patients with obesity and T2DM were 3.4 (1.0), 0.7 (0.1), 0.6 (0.1) (AU) (p < 0.001) and 1.0 (0.2), 0.5 (0.1), 0.4 (0.1) (AU) (p = NS), respectively. Higher visceral HCRTR1 expression was associated with lower fasting insulin and homeostatic model of insulin resistance, also after adjusting for BMI. In human adipocytes, HCRTR1 expression did not exhibit significant oscillation. CONCLUSIONS: Human adipose tissue is a putative direct target of the OxA-OxR1 system, with higher morning input being associated with improved metabolic profile.


Subject(s)
Adipose Tissue , Insulin Resistance , Orexin Receptors , Orexins/genetics , Cross-Sectional Studies , Female , Humans , Intra-Abdominal Fat , Male , Orexin Receptors/genetics
5.
FASEB J ; 33(12): 13808-13824, 2019 12.
Article in English | MEDLINE | ID: mdl-31638418

ABSTRACT

N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.


Subject(s)
Aspartic Acid/analogs & derivatives , Acetyl Coenzyme A/metabolism , Acetyltransferases/metabolism , Adipocytes/metabolism , Animals , Aspartic Acid/metabolism , Brain/metabolism , Diet, Fat-Restricted , Energy Metabolism/physiology , Insulin Resistance/physiology , Lipolysis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism
6.
J Endocrinol ; 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31394498

ABSTRACT

Disrupted sleep is associated with increased risk of type 2 diabetes. Central actions of orexin, mediated by orexin-1 and orexin-2 receptors, play a crucial role in the maintenance of wakefulness; accordingly, excessive activation of the orexin system causes insomnia. Resting-phase administration of dual orexin receptor antagonist (DORA) has been shown to improve sleep abnormalities and glucose intolerance in type 2 diabetic db/db mice, although the mechanism remains unknown. In the present study, to investigate the presence of functional link between sleep and glucose metabolism, the influences of orexin antagonists with or without sleep-promoting effects were compared on glucose metabolism in diabetic mice. In db/db mice, 2-SORA-MK1064 (an orexin-2 receptor antagonist) and DORA-12 (a DORA) acutely improved non-rapid eye movement sleep, whereas 1-SORA-1 (an orexin-1 receptor antagonist) had no effect. Chronic resting-phase administration of these drugs improved glucose intolerance, without affecting body weight, food intake, locomotor activity, and energy expenditure calculated from O2 consumption and CO2 production. The expression levels of pro-inflammatory factors in the liver were reduced by 2-SORA-MK1064 and DORA-12, but not 1-SORA-1, whereas those in the white adipose tissue were reduced by 1-SORA-1 and DORA-12 more efficiently than 2-SORA-MK1064. When administered chronically at awake phase, these drugs caused no effect. In streptozotocin-induced type 1-like diabetic mice, neither abnormality in sleep-wake behavior nor improvement of glucose intolerance by these drugs were observed. These results suggest that both 1-SORA-type (sleep-independent) and 2-SORA-type (possibly sleep-dependent) mechanisms can provide chronotherapeutic effects against type 2 diabetes associated with sleep disturbances in db/db mice.

7.
Endocrinology ; 157(11): 4146-4157, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27631554

ABSTRACT

Sleep disturbances are associated with type 2 diabetes; therefore, the amelioration of sleep may improve metabolic disorders. To investigate this possibility, we here examined the effects of suvorexant, an antiinsomnia drug targeting the orexin system, on sleep and glucose metabolism in type 2 diabetic mice. Diabetic db/db mice had a longer wakefulness time during the resting period, as compared with nondiabetic db/m+ control mice. The single or 7-day administration of suvorexant at lights-on (ie, the beginning of the resting phase) increased nonrapid eye movement sleep time during the resting phase and, as a consequence, reduced awake time. The daily resting-phase administration of suvorexant for 2-4 weeks improved impaired glucose tolerance in db/db mice without affecting body weight gain, food intake, systemic insulin sensitivity, or serum insulin, and glucagon levels. No changes were detected in the markers of lipid metabolism and inflammation, such as the hepatic triglyceride content and Tnf-α mRNA levels in liver and adipose tissues. The improving effect of suvorexant on glucose tolerance was associated with a reduction in the expression levels of hepatic gluconeogenic factors, including phosphoenolpyruvate carboxykinase and peroxisome proliferator-activated receptor-γ coactivator-1α in the liver in the resting phase. In contrast, the daily awake-phase administration of suvorexant had no beneficial effect on glucose metabolism. These results suggest that the suvorexant-induced increase of sleep time at the resting phase improved hepatic glucose metabolism in db/db mice. Our results provide insight into the development of novel pharmacological interventions for type 2 diabetes that target the orexin-operated sleep/wake regulatory system.


Subject(s)
Azepines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Orexin Receptor Antagonists/therapeutic use , Orexins/metabolism , Sleep/drug effects , Triazoles/therapeutic use , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/blood , Energy Metabolism/drug effects , Glucagon/blood , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Orexins/antagonists & inhibitors , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Triglycerides/blood , Wakefulness/drug effects
8.
Endocrinology ; 157(1): 195-206, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26492471

ABSTRACT

Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Chronotherapy , Gluconeogenesis/drug effects , Hypothalamus/drug effects , Liver/drug effects , Nicotine/administration & dosage , Orexins/agonists , Animals , Crosses, Genetic , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Hyperglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Hypothalamus/metabolism , Insulin Resistance , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Nicotine/therapeutic use , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/therapeutic use , Obesity/complications , Obesity/etiology , Orexins/genetics , Orexins/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism
9.
Diabetes ; 64(2): 459-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25249578

ABSTRACT

Circadian rhythm is crucial for preventing hepatic insulin resistance, although the mechanism remains uncovered. Here we report that the wake-active hypothalamic orexin system plays a key role in this regulation. Wild-type mice showed that a daily rhythm in blood glucose levels peaked at the awake period; however, the glucose rhythm disappeared in orexin knockout mice despite normal feeding rhythm. Central administration of orexin A during nighttime awake period acutely elevated blood glucose levels but subsequently lowered daytime glucose levels in normal and diabetic db/db mice. The glucose-elevating and -lowering effects of orexin A were suppressed by adrenergic antagonists and hepatic parasympathectomy, respectively. Moreover, the expression levels of hepatic gluconeogenic genes, including Pepck, were increased and decreased by orexin A at nanomolar and femtomolar doses, respectively. These results indicate that orexin can bidirectionally regulate hepatic gluconeogenesis via control of autonomic balance, leading to generation of the daily blood glucose oscillation. Furthermore, during aging, orexin deficiency enhanced endoplasmic reticulum (ER) stress in the liver and caused impairment of hepatic insulin signaling and abnormal gluconeogenic activity in pyruvate tolerance test. Collectively, the daily glucose rhythm under control of orexin appears to be important for maintaining ER homeostasis, thereby preventing insulin resistance in the liver.


Subject(s)
Autonomic Nervous System/drug effects , Circadian Rhythm , Hypothalamus/metabolism , Insulin Resistance , Intracellular Signaling Peptides and Proteins/pharmacology , Liver/drug effects , Neuropeptides/pharmacology , Animals , Blood Glucose , Epinephrine/pharmacology , Genes, Transgenic, Suicide , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Neuropeptides/genetics , Neuropeptides/metabolism , Neurotransmitter Agents/pharmacology , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins , Receptors, Leptin/genetics , Receptors, Leptin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...