Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(11): 5901-5909, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37860991

ABSTRACT

Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Retinal Diseases , Animals , Mice , Blood-Retinal Barrier/metabolism , Glycosaminoglycans , Iduronate Sulfatase/metabolism , Iduronate Sulfatase/therapeutic use , Iduronic Acid , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/diagnosis , Receptors, Transferrin , Retinal Diseases/drug therapy
2.
Toxicology ; 461: 152903, 2021 09.
Article in English | MEDLINE | ID: mdl-34425168

ABSTRACT

Several studies using bleomycin (BLM)-induced lung injury rat model revealed that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. Conversely, microRNAs (miRNAs) are considered as useful markers of various diseases. In the present study, we aimed to characterize the EMT state through focusing on alveolar epithelial cells and identify the miRNAs that can be used as markers to predict pulmonary fibrosis using a BLM-induced lung injury rat model. Intratracheal administration of BLM increased hydroxyproline, a component of collagen, in lung tissues at day 14, but not at day 7. However, BLM induced EMT at day 7, which was accompanied with increased mRNA expression of α-smooth muscle actin, a representative EMT marker, in alveolar epithelium, thereby suggesting that EMT occurs prior to pulmonary fibrosis in alveolar epithelial cells. Using this rat model, the expression levels of several EMT-associated miRNAs were examined, and miR-222 was found to be upregulated in alveolar epithelial cells as well as bronchoalveolar lavage fluid from day 3. Our findings indicate that EMT in alveolar epithelial cells may occur before pulmonary fibrosis, and miR-222 may be used as a potential marker for early prediction of pulmonary fibrosis.


Subject(s)
Bleomycin/toxicity , Epithelial-Mesenchymal Transition/drug effects , Lung Injury/chemically induced , Pulmonary Fibrosis/chemically induced , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/toxicity , Bleomycin/administration & dosage , Lung Injury/genetics , Lung Injury/physiopathology , Male , MicroRNAs/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/physiopathology , Rats , Rats, Sprague-Dawley , Time Factors
3.
J Pharm Pharm Sci ; 23: 486-495, 2020.
Article in English | MEDLINE | ID: mdl-33259780

ABSTRACT

BACKGROUND: Drug-induced lung injury leads to serious lung diseases, such as pulmonary fibrosis. We demonstrated in an alveolar epithelial cell line A549/ABCA3 that certain microRNAs were associated with bleomycin induced epithelial-mesenchymal transition (EMT) which is closely related to pulmonary fibrosis. In this study, we focused on the role of miR-484 in drug-induced EMT using A549/ABCA3 cells and a mouse lung injury model. METHODS: The expression of EMT-related genes and miR-484 was detected by real-time polymerase chain reaction. miR-484-targeted proteins were analyzed by Western blot. Pulmonary fibrosis mouse model was prepared by the intratracheal administration of BLM. As miR-484 is known to target SMAD2 and zinc finger E-box binding homeobox 1 (ZEB1), which are the well-known EMT-related transcription factors, we assessed the effects of a miR-484 inhibitor or mimic on the mRNA/protein expression of both the factors. RESULTS: We found that bleomycin significantly suppressed the intracellular expression and extracellular release of miR-484 in A549/ABCA3 cells. Moreover, the miR-484 mimic and inhibitor showed no drastic effects on the expression of the EMT-related transcription factors. In addition, the miR-484 mimic had no effect on the bleomycin-induced altered mRNA expression of the α-smooth muscle actin, a representative EMT marker. This suggested that miR-484 did not directly contribute to bleomycin-induced EMT in A549/ABCA3 cells. In contrast, the significant decrease in miR-484 expression in the lung tissue or plasma of bleomycin-administered mice suggested that miR-484 expression was closely correlated with bleomycin-induced lung injury. CONCLUSIONS: These findings indicate that miR-484 could be a novel diagnostic indicator for drug-induced pulmonary fibrosis.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Bleomycin/toxicity , MicroRNAs/genetics , Pulmonary Fibrosis/chemically induced , A549 Cells , Actins/genetics , Animals , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Humans , Male , Mice , Pulmonary Fibrosis/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction
4.
J Pharm Pharm Sci ; 22(1): 516-524, 2019.
Article in English | MEDLINE | ID: mdl-31603744

ABSTRACT

PURPOSE: Several anticancer drugs including bleomycin (BLM) and methotrexate (MTX) cause serious lung diseases such as pulmonary fibrosis. Although evidences showing the association of epithelial-mesenchymal transition (EMT) with pulmonary fibrosis are increasing, the mechanism underlying anticancer drug-induced EMT has been poorly understood. On the other hand, miR-34a, a non-coding small RNA, has been highlighted as a key factor to regulate EMT in lung. In this study, we elucidated the role of miR-34a in anticancer drug-induced EMT using A549/ABCA3 cells as a novel type II alveolar epithelium model. METHODS: Expression levels of α-smooth muscle actin (α-SMA) mRNA, miR-34a, and p53 were evaluated by real-time PCR and western blot analysis, respectively. RESULTS: BLM and MTX induced EMT-like morphological changes and increase in mRNA expression level of α-SMA, an EMT marker. Also, both drugs increased the expression level of miR-34a. Furthermore, mRNA expression level of α-SMA was enhanced by introduction of miR-34a mimic into A549/ABCA3 cells. To examine the mechanism underlying drug-induced enhancement of miR-34a expression, we focused on p53/miR-34a axis. Both drugs upregulated protein expression of p53, an inducer of miR-34a, as well as phosphorylation of Ser15 in p53. CONCLUSIONS: These findings indicated that p53/miR-34a axis may contribute to anticancer drug-induced EMT in type II alveolar epithelial cells.


Subject(s)
Antineoplastic Agents/pharmacology , Bleomycin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Methotrexate/pharmacology , MicroRNAs/genetics , Tumor Suppressor Protein p53/genetics , A549 Cells , Humans , MicroRNAs/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...