Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 10(17): 3303-3310, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35380154

ABSTRACT

X-Ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nanoparticles activated by X-rays. Hence, it allows overcoming the depth-penetration limitations of conventional photodynamic therapy and, at the same time, reducing the dose needed to eradicate cancer in the frame of radiotherapy treatment. The direct production of singlet oxygen by octahedral molybdenum cluster complexes upon X-ray irradiation is a promising avenue in order to simplify the architecture of radiosensitizing systems. One such complex was utilized to prepare water-stable nanoparticles using the solvent displacement method. The nanoparticles displayed intense red luminescence in aqueous media, efficiently quenched by oxygen to produce singlet oxygen, resulting in a substantial photodynamic effect under blue light irradiation. A robust radiosensitizing effect of the nanoparticles was demonstrated in vitro against TRAMP-C2 murine prostatic carcinoma cells at typical therapeutic X-ray doses. Injection of a suspension of the nanoparticles to a mouse model revealed the absence of acute toxicity as evidenced by the invariance of key physiological parameters. This study paves the way for the application of octahedral molybdenum cluster-based radiosensitizers in X-ray-induced photodynamic therapy and its translation to in vivo experiments.


Subject(s)
Carcinoma , Nanoparticles , Photochemotherapy , Prostatic Neoplasms , Radiation-Sensitizing Agents , Animals , Humans , Male , Mice , Molybdenum/pharmacology , Photochemotherapy/methods , Prostatic Neoplasms/drug therapy , Singlet Oxygen , X-Rays
2.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639130

ABSTRACT

Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles' heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.


Subject(s)
Acidosis/physiopathology , Caprylates/pharmacology , Citric Acid Cycle/drug effects , Glucose/metabolism , Mitochondria/drug effects , Neoplasms/drug therapy , Sulfides/pharmacology , Tumor Microenvironment , Adaptation, Physiological , Antineoplastic Agents/pharmacology , Energy Metabolism , Glycolysis , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress , Tumor Cells, Cultured
3.
Beilstein J Nanotechnol ; 9: 2960-2967, 2018.
Article in English | MEDLINE | ID: mdl-30546993

ABSTRACT

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.

4.
Org Biomol Chem ; 16(39): 7274-7281, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30259016

ABSTRACT

The development of effective photosensitizers is particularly attractive for photodynamic therapy of cancer. Three novel porphyrin photosensitizers functionalized with phosphinic groups were synthesized and their physicochemical, photophysical, and photobiological properties were collected. Phosphinic acid groups (R1R2POOH) attached to the porphyrin moiety (R1) contain different R2 substituents (methyl, isopropyl, phenyl in this study). The presence of phosphinic groups does not influence absorption and photophysical properties of the porphyrin units, including the O2(1Δg) productivity. In vitro studies show that these porphyrins accumulate in cancer cells, are inherently nontoxic, however, exhibit high phototoxicity upon irradiation with visible light with their phototoxic efficacy tuned by R2 substituents on the phosphorus centre. Thus, phosphinatophenylporphyrin with isopropyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake. We demonstrate that these porphyrins are attractive candidates for photodynamic applications since their photodynamic efficacy can be easily tuned by the R2 substituent.


Subject(s)
Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , HeLa Cells , Humans , Photosensitizing Agents/metabolism , Porphyrins/metabolism , Serum Albumin, Human/metabolism
5.
Biotechnol Adv ; 36(3): 583-602, 2018.
Article in English | MEDLINE | ID: mdl-29339119

ABSTRACT

The hallmarks of tumor tissue are not only genetic aberrations but also the presence of metabolic and oxidative stress as a result of hypoxia and lactic acidosis. The stress activates several prosurvival pathways including metabolic remodeling, autophagy, antioxidant response, mitohormesis, and glutaminolysis, whose upregulation in tumors is associated with a poor survival of patients, while their activation in healthy tissue with statins, metformin, physical activity, and natural compounds prevents carcinogenesis. This review emphasizes the dual role of stress response pathways in cancer and suggests the integrative understanding as a basis for the development of rational therapy targeting the stress response.


Subject(s)
Neoplasms/etiology , Neoplasms/prevention & control , Stress, Physiological/physiology , Animals , Antioxidants/metabolism , Autophagy , Caloric Restriction , Exercise , Hormesis , Humans , Inflammation/complications , Inflammation/metabolism , Mutagenesis , Neoplasms/therapy , Oxidative Stress , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...