Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 76(3): 376-381, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30710153

ABSTRACT

4-Methyl-5-pentylbenzene-1,3-diol (MPBD), a product of the polyketide synthase SteelyA, is a signaling molecule that regulates Dictyostelium discoideum development. During early development, MPBD controls chemotactic cell aggregation by regulating the expression of genes in the cAMP signaling pathway; however, during culmination at late development, it induces spore maturation. In the present study, we analyzed the effects of MPBD, its derivatives, and a putative MPBD-derived metabolite on developmental defects in the MPBD-less stlA null mutant. Using structure-activity relationship studies, it was observed that in MPBD, the functional groups that were essential for induction of spore maturation were different from those essential for induction of cell aggregation. Dictyoquinone, a putative MPBD metabolite rescued the aggregation defect in stlA null mutant in early development, but not the spore maturation defect at the later stage. Our data suggest that MPBD regulates chemotactic cell aggregation and spore maturation via different mechanisms.


Subject(s)
Chemotaxis/physiology , Dictyostelium/physiology , Resorcinols/metabolism , Spores, Protozoan/growth & development , Benzoquinones/pharmacology , Chemotaxis/drug effects , Dictyostelium/genetics , Dictyostelium/growth & development , Dictyostelium/metabolism , Gene Expression/drug effects , Mutation , Polyketide Synthases/genetics , Protozoan Proteins/genetics , Resorcinols/chemistry , Resorcinols/pharmacology , Spores, Protozoan/genetics , Spores, Protozoan/metabolism , Spores, Protozoan/physiology , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(5): 1428-33, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26832786

ABSTRACT

4-Methyl-5-pentylbenzene-1,3-diol (MPBD) is a secondary metabolite of SteelyA polyketide synthase, which controls cell aggregation and spore maturation of Dictyostelium discoideum. In this study, chemical synthesis of MPBD and its derivatives was achieved. Structure-activity relationship (SAR) studies for antimicrobial activities against Escherichia coli and Bacillus subtilis were also conducted.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Dictyostelium/chemistry , Escherichia coli/drug effects , Resorcinols/chemical synthesis , Resorcinols/pharmacology , Anti-Bacterial Agents/chemical synthesis , Dictyostelium/metabolism , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Resorcinols/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...