Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Med Dosim ; 48(2): 105-112, 2023.
Article in English | MEDLINE | ID: mdl-36914455

ABSTRACT

This study aimed to examine the dosimetric effect of intensity-modulated proton therapy (IMPT) with a multi-leaf collimator (MLC) in treating malignant glioma. We compared the dose distribution of IMPT with or without MLC (IMPTMLC+ or IMPTMLC-, respectively) using pencil beam scanning and volumetric-modulated arc therapy (VMAT) in simultaneous integrated boost (SIB) plans for 16 patients with malignant gliomas. High- and low-risk target volumes were assessed using D2%, V90%, V95%, homogeneity index (HI), and conformity index (CI). Organs at risk (OARs) were evaluated using the average dose (Dmean) and D2%. Furthermore, the dose to the normal brain was evaluated using from V5Gy to V40Gy at 5 Gy intervals. There were no significant differences among all techniques regarding V90%, V95%, and CI for the targets. HI and D2% for IMPTMLC+ and IMPTMLC- were significantly superior to those for VMAT (p < 0.01). The Dmean and D2% of all OARs for IMPTMLC+ were equivalent or superior to those of other techniques. Regarding the normal brain, there was no significant difference in V40Gy among all techniques whereas V5Gy to V35Gy in IMPTMLC+ were significantly smaller than those in IMPTMLC- (with differences ranging from 0.45% to 4.80%, p < 0.05) and VMAT (with differences ranging from 6.85% to 57.94%, p < 0.01). IMPTMLC+ could reduce the dose to OARs, while maintaining target coverage compared to IMPTMLC- and VMAT in treating malignant glioma.


Subject(s)
Glioma , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Glioma/radiotherapy , Organs at Risk
2.
Brachytherapy ; 21(6): 956-967, 2022.
Article in English | MEDLINE | ID: mdl-35902335

ABSTRACT

PURPOSE: To quantify dose delivery errors for high-dose-rate image-guided brachytherapy (HDR-IGBT) using an independent end-to-end dose delivery quality assurance test at multiple institutions. The novelty of our study is that this is the first multi-institutional end-to-end dose delivery study in the world. MATERIALS AND METHODS: The postal audit used a polymer gel dosimeter in a cylindrical acrylic container for the afterloading system. Image acquisition using computed tomography, treatment planning, and irradiation were performed at each institution. Dose distribution comparison between the plan and gel measurement was performed. The percentage of pixels satisfying the absolute-dose gamma criterion was reviewed. RESULTS: Thirty-five institutions participated in this study. The dose uncertainty was 3.6% ± 2.3% (mean ± 1.96σ). The geometric uncertainty with a coverage factor of k = 2 was 3.5 mm. The tolerance level was set to the gamma passing rate of 95% with the agreement criterion of 5% (global)/3 mm, which was determined from the uncertainty estimation. The percentage of pixels satisfying the gamma criterion was 90.4% ± 32.2% (mean ± 1.96σ). Sixty-six percent (23/35) of the institutions passed the verification. Of the institutions that failed the verification, 75% (9/12) had incorrect inputs of the offset between the catheter tip and indexer length in treatment planning and 17% (2/12) had incorrect catheter reconstruction in treatment planning. CONCLUSIONS: The methodology should be useful for comprehensively checking the accuracy of HDR-IGBT dose delivery and credentialing clinical studies. The results of our study highlight the high risk of large source positional errors while delivering dose for HDR-IGBT in clinical practices.


Subject(s)
Brachytherapy , Humans , Brachytherapy/methods , Radiotherapy Dosage , Radiation Dosimeters , Catheters , Tomography, X-Ray Computed , Radiometry/methods , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...