Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 14(1): 57-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30478274

ABSTRACT

Despite tremendous progress in efficiency and stability, perovskite solar cells are still facing the challenge of upscaling. Here we present unique advantages of reactive polyiodide melts for solvent- and adduct-free reactionary fabrication of perovskite films exhibiting excellent quality over large areas. Our method employs a nanoscale layer of metallic Pb coated with stoichiometric amounts of CH3NH3I (MAI) or mixed CsI/MAI/NH2CHNH2I (FAI), subsequently exposed to iodine vapour. The instantly formed MAI3(L) or Cs(MA,FA)I3(L) polyiodide liquid converts the Pb layer into a pure perovskite film without byproducts or unreacted components at nearly room temperature. We demonstrate highly uniform and relatively large area MAPbI3 perovskite films, such as 100 cm2 on glass/fluorine-doped tin oxide (FTO) and 600 cm2 on flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. As a proof-of-concept, we demonstrate solar cells with reverse scan power conversion efficiencies of 16.12% (planar MAPbI3), 17.18% (mesoscopic MAPbI3) and 16.89% (planar Cs0.05MA0.2FA0.75PbI3) in the standard FTO/c(m)-TiO2/perovskite/spiro-OMeTAD/Au architecture.

2.
ChemSusChem ; 10(19): 3754-3759, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28660660

ABSTRACT

Hybrid CPbX3 (C: Cs, CH3 NH3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C2 ABX6 double perovskites based on alternating corner-shared AX6 and BX6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX6 and BX6 octahedra with the general formula Aa Bb Xx (x=a+3 b) such as Ag3 BiI6 , Ag2 BiI5 , AgBiI4 , AgBi2 I7 . As perovskites were named after their prototype oxide CaTiO3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO2 /Ag3 BiI6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %.


Subject(s)
Bismuth/chemistry , Calcium Compounds/chemistry , Electric Power Supplies , Halogens/chemistry , Oxides/chemistry , Silver/chemistry , Solar Energy , Titanium/chemistry , Lead/chemistry , Models, Molecular , Molecular Conformation
3.
J Vis Exp ; (105): e53276, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26575244

ABSTRACT

One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy to this issue, we herein show a transfer printing-based approach that allows the quick and low-cost integration of designed metal nanostructures with a variety of device architectures, including solar cells. Nanopillar poly(dimethylsiloxane) (PDMS) stamps were fabricated from a commercially available nanohole plastic film as a master mold. On this nanopatterned PDMS stamps, Ag films were deposited, which were then transfer-printed onto block copolymer (binding layer)-coated hydrogenated microcrystalline Si (µc-Si:H) surface to afford ordered Ag nanodisk structures. It was confirmed that the resulting Ag nanodisk-incorporated µc-Si:H solar cells show higher performances compared to a cell without the transfer-printed Ag nanodisks, thanks to plasmonic light trapping effect derived from the Ag nanodisks. Because of the simplicity and versatility, further device application would also be feasible thorough this approach.


Subject(s)
Metal Nanoparticles/chemistry , Nanostructures/chemistry , Silicon/chemistry , Silver/chemistry , Solar Energy , Dimethylpolysiloxanes/chemistry , Hydrogen/chemistry , Light , Printing
4.
Sci Rep ; 5: 11141, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26053164

ABSTRACT

Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of core-shell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it's optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm(-2) under 1 sun illumination at 1.23 V(RHE) that corresponds to ~90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm(-2) that corresponds to the solar to hydrogen generation efficiency of 8.1%.

5.
Nanotechnology ; 23(32): 325606, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22828486

ABSTRACT

We performed studies of the self-organization processes in nanoporous alumina membranes at initial and late stages of aluminum anodization by using scanning electron microscopy (SEM) and small-angle neutron scattering (SANS). SEM observations indicated three stages in the self-organization of nanopores in alumina: (1) nucleation of random nanopores with a broad radius distribution, (2) narrowing the radius distribution and (3) slow evolution of the nanoporous structure towards ordering of nanopores into large domains. SANS studies revealed orientational correlation between ordered domains of nanopores, which is characterized by a small misorientation angle. For the samples with high aspect ratios of nanopores, the SANS patterns showed azimuthal smearing, which was attributed to the redistribution of nanopores between the domains during their growth.

6.
Opt Express ; 17(2): 520-7, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19158863

ABSTRACT

Even with intensive research, air-stable blue light emission from silicon nanocrystals (Si-ncs) at room temperature still remains a challenge. We show that stable and blue-luminescent Si-ncs can be produced by laser-generated plasma (nanosecond-pulsed excimer laser) confined in water. These Si-ncs exhibit quantum confinement effect due to their size and are produced with an environmentally compatible process. The effect of aging for several weeks in water and air on blue Si-ncs emission properties is compared. The oxide shell around the nanocrystalline core formed during laser processing in water offers the required conditions for the confinement of excitons that allow for stable (in either air or water) blue photoluminescence at room temperature.

7.
Nanoscale Res Lett ; 4(11): 1389-94, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-20628462

ABSTRACT

A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO(2)) nanotubes' template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO(2) nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

8.
Biosci Biotechnol Biochem ; 67(10): 2269-72, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14586119

ABSTRACT

A tryptic [EC 3.4.21.4] digestion assay of 2-aminoisobutyric acid (Aib)-containing peptides was carried out to investigate the effect of alpha,alpha-dialkyl amino acid residues on the protease resistance. The introduction of Aib residues to the P1' positions exhibited a 19-fold higher protease resistance than the peptide with Aib residues introduced to the P2 position or the non-Aib peptide. The peptide having Aib residues introduced to the P1' and P2 positions resulted in complete resistance.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Endopeptidases/metabolism , Peptides/metabolism , Drug Resistance , Kinetics , Peptides/chemistry , Protein Conformation , Structure-Activity Relationship , Trypsin/metabolism
9.
Protein Pept Lett ; 10(2): 147-53, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12678812

ABSTRACT

Formylpeptide receptors are well-characterized receptors which participate in host defense responses of neutrophils. We designed and synthesized chemotactic peptide analog with p-benzoylphenylalanine (Bpa) and biotin to probe structural and mechanistic aspects of peptide-receptor interaction. These peptides possess biological activities which were dependent upon spacer residue length of and Bpa position. The covalent photoaffinity label was detected by Streptavidine-blot, which was inhibited by the parent peptide.


Subject(s)
Chemotaxis/physiology , Molecular Probes , Peptides/chemical synthesis , Phenylalanine/analogs & derivatives , Photoaffinity Labels , Biotin/chemistry , Peptides/metabolism , Phenylalanine/chemistry , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...