Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(3): 4600-4614, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209693

ABSTRACT

The theoretical studies of light absorption and scattering spectra of the plexcitonic two-layer triangular nanoprisms and three-layer nanospheres are reported. The optical properties of such metal-organic core-shell and core-double-shell nanostructures were previously explained within the framework of pure isotropic models for describing their outer excitonic shell. In this work, we show that the anisotropy of the excitonic shell permittivity can drastically affect the optical spectra of such hybrid nanostructures. This fact is confirmed by directly comparing our theory with some available experimental data, which cannot be treated using conventional isotropic shell models. We have analyzed the influence of the shell anisotropy on the optical spectra and proposed a type of hybrid nanostructure that seems the most convenient for experimental observation of the effects associated with the anisotropy of the excitonic shell. A strong dependence of the anisotropic properties of the J-aggregate shell on the material of the intermediate spacer layer is demonstrated. This allows proposing a new way to effectively control the optical properties of metal-organic nanostructures by selecting the spacer material. Our results extend the understanding of physical effects in optics of plexcitonic nanostructures to more complex systems with the anisotropic and multi-excitonic properties of their molecular aggregate shell.

2.
Opt Express ; 27(8): 11783-11799, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31053019

ABSTRACT

We study an unusual effect of spectral-band replication in the optical spectra of dimers, consisting of spherical nanoparticles or nanodisks with a silver core and a J-aggregate shell of TDBC-dye. It consists in the emergence of a doubled number of plexcitonic spectral bands compared to the case of a plasmonic dimer and in narrow peaks associated with the resonances of the J-aggregate shell. The plexcitonic bands can be divided into two groups: the "original" bands, accurately reproducing plasmonic peaks, and their "replicas," with a specific mutual arrangement and intensity distributions. The effect is interpreted using the multi-state effective Hamiltonian model describing a strong coupling between the quasi-degenerate Frenkel excitonic modes in the organic shells and multiple plasmonic modes in the pair of Ag-cores. We quantitatively explain some available experimental data on the optical properties of nanodisks and suggest a way for the observation of the replication effect. Our results extend the understanding of the nature of plexcitonic coupling to more complex systems compared to individual metal/J-aggregate nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...