Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 310(7): C509-19, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26791491

ABSTRACT

Intracellular Ca(2+) signals play a central role in several cellular processes; therefore it is not surprising that altered Ca(2+) homeostasis regulatory mechanisms lead to a variety of severe pathologies, including cancer. Stromal interaction molecules (STIM) and ORAI proteins have been identified as critical components of Ca(2+) entry in both store-dependent (SOCE mechanism) and independent by intracellular store depletion and have been implicated in several cellular functions. In recent years, both STIMs and ORAIs have emerged as possible molecular targets for cancer therapeutics. In this review we focus on the role of STIM and ORAI proteins in cancer progression. In particular we analyze their role in the different hallmarks of cancer, which represent the organizing principle that describes the complex multistep process of neoplastic diseases.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Neoplasms/metabolism , Animals , Humans
2.
Cell Death Dis ; 5: e1193, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24763050

ABSTRACT

The growing number of studies suggested that inhibition of autophagy enhances the efficacy of Akt kinase inhibitors in cancer therapy. Here, we provide evidence that ML-9, a widely used inhibitor of Akt kinase, myosin light-chain kinase (MLCK) and stromal interaction molecule 1 (STIM1), represents the 'two-in-one' compound that stimulates autophagosome formation (by downregulating Akt/mammalian target of rapamycin (mTOR) pathway) and inhibits their degradation (by acting like a lysosomotropic agent and increasing lysosomal pH). We show that ML-9 as a monotherapy effectively induces prostate cancer cell death associated with the accumulation of autophagic vacuoles. Further, ML-9 enhances the anticancer activity of docetaxel, suggesting its potential application as an adjuvant to existing anticancer chemotherapy. Altogether, our results revealed the complex effect of ML-9 on autophagy and indentified ML-9 as an attractive tool for targeting autophagy in cancer therapy through dual inhibition of both the Akt pathway and the autophagy.


Subject(s)
Autophagy/drug effects , Azepines/pharmacology , Lysosomes/drug effects , Prostatic Neoplasms/pathology , Calcium/metabolism , Cell Line, Tumor , Class III Phosphatidylinositol 3-Kinases/metabolism , Down-Regulation/drug effects , Homeostasis/drug effects , Humans , Hydrogen-Ion Concentration/drug effects , Lysosomes/ultrastructure , Male , Models, Biological , Phagosomes/drug effects , Phagosomes/metabolism , Phagosomes/ultrastructure , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/ultrastructure , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...