Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014329

ABSTRACT

Background: In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims: This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods: We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results: Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions: This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.

2.
Nanotheranostics ; 5(3): 309-320, 2021.
Article in English | MEDLINE | ID: mdl-33732602

ABSTRACT

Surface functionalization of nanoparticles (NPs) may alter their biological interactions such as uptake by alveolar macrophages (AMs). Pulmonary delivery of gold NPs (Au NPs) has theranostic potential due to their optoelectronic properties, minimal alveoli to blood translocation, and possibility of specific cell targeting. Here, we examined whether coating Au NPs with transferrin alters their protein corona, uptake by macrophages, and pulmonary translocation. Methods: Rats were intratracheally instilled with transferrin-coated Au NPs (Tf-Au NPs) or polyethylene glycol-coated Au NPs (PEG-Au NPs). AMs were collected and processed for quantitation of Au cell uptake using ICP-MS and electron microscopy. Au retention in the lungs and other organs was also determined. The uptake of fluorescently labeled Tf-Au NPs and PEG-Au NPs by monocyte-derived human macrophages was also evaluated in vitro. Results: We showed that Tf-Au NPs were endocytosed by AMs and were retained in the lungs to a greater extent than PEG-Au NPs. Both Au NPs acquired similar protein coronas after incubation in rat broncho-alveolar lavage fluid (BALf). The translocation of Au from both NPs to other organs was less than 0.5% of the instilled dose. Transferrin coating enhanced the uptake of Au NPs by primary monocyte-derived human macrophages. Conclusions: We report that coating of NP surface with transferrin can target them to rat AMs and human monocyte-derived macrophages. NP functionalization with transferrin may enhance NP-based therapeutic strategies for lung diseases.


Subject(s)
Gold/chemistry , Lung/metabolism , Metal Nanoparticles/chemistry , Transferrin/chemistry , Adult , Animals , Bronchoalveolar Lavage Fluid , Drug Delivery Systems , Humans , Macrophages, Alveolar/metabolism , Male , Pharmacokinetics , Protein Corona/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...