Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; : e2400171, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710636

ABSTRACT

This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).

2.
Future Med Chem ; 15(19): 1791-1806, 2023 10.
Article in English | MEDLINE | ID: mdl-37877255

ABSTRACT

Background: The development of novel antimicrobial drugs is an essential part of combatting the uprising of antimicrobial resistance. Proper hit-to-lead development is crucially needed. Methods & results: We present a hit-expansion study of N-pyrazinyl- and N-pyridyl-hydroxybenzamides with a comprehensive determination of structure-activity relationships. The antimicrobial screening revealed high selectivity to staphylococci along with antimycobacterial activity with the best value of 6.25 µg/ml against Mycobacterium tuberculosis H37Rv. We proved an inhibition of proteosynthesis and a membrane depolarization of methicillin-resistant Staphylococcus aureus. Conclusion: Our results are a good starting point for further development of new antimicrobial compounds, where the next step would be tuning the potential between relatively nonspecific membrane depolarization effect and specific inhibition of proteosynthesis.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus
4.
Eur J Med Chem ; 258: 115617, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37423128

ABSTRACT

Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).


Subject(s)
Aminosalicylic Acid , Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Isoniazid/pharmacology , Aminosalicylic Acid/pharmacology , Antitubercular Agents/chemistry , Tuberculosis/drug therapy , Tuberculosis/microbiology , Methionine , Microbial Sensitivity Tests
5.
Microbiol Spectr ; 11(3): e0306422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37098945

ABSTRACT

In this study, we have focused on a multiparametric microbiological analysis of the antistaphylococcal action of the iodinated imine BH77, designed as an analogue of rafoxanide. Its antibacterial activity against five reference strains and eight clinical isolates of Gram-positive cocci of the genera Staphylococcus and Enterococcus was evaluated. The most clinically significant multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant Enterococcus faecium, were also included. The bactericidal and bacteriostatic actions, the dynamics leading to a loss of bacterial viability, antibiofilm activity, BH77 activity in combination with selected conventional antibiotics, the mechanism of action, in vitro cytotoxicity, and in vivo toxicity in an alternative animal model, Galleria mellonella, were analyzed. The antistaphylococcal activity (MIC) ranged from 15.625 to 62.5 µM, and the antienterococcal activity ranged from 62.5 to 125 µM. Its bactericidal action; promising antibiofilm activity; interference with nucleic acid, protein, and peptidoglycan synthesis pathways; and nontoxicity/low toxicity in vitro and in vivo in the Galleria mellonella model were found to be activity attributes of this newly synthesized compound. In conclusion, BH77 could be rightfully minimally considered at least as the structural pattern for future adjuvants for selected antibiotic drugs. IMPORTANCE Antibiotic resistance is among the largest threats to global health, with a potentially serious socioeconomic impact. One of the strategies to deal with the predicted catastrophic future scenarios associated with the rapid emergence of resistant infectious agents lies in the discovery and research of new anti-infectives. In our study, we have introduced a rafoxanide analogue, a newly synthesized and described polyhalogenated 3,5-diiodosalicylaldehyde-based imine, that effectively acts against Gram-positive cocci of the genera Staphylococcus and Enterococcus. The inclusion of an extensive and comprehensive analysis for providing a detailed description of candidate compound-microbe interactions allows the valorization of the beneficial attributes linked to anti-infective action conclusively. In addition, this study can help with making rational decisions about the possible involvement of this molecule in advanced studies or may merit the support of studies focused on related or derived chemical structures to discover more effective new anti-infective drug candidates.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Rafoxanide/pharmacology , Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Staphylococcus , Enterococcus
7.
Future Med Chem ; 15(3): 255-274, 2023 02.
Article in English | MEDLINE | ID: mdl-36891917

ABSTRACT

Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 µM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Mafenide , Schiff Bases/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769275

ABSTRACT

Tuberculosis remains a serious killer among infectious diseases due to its incidence, mortality, and occurrence of resistant mycobacterial strains. The challenge to discover new antimycobacterial agents forced us to prepare a series of N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides 1-19 via the acylation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol with various activated (hetero)arylcarboxylic acids. These novel compounds have been tested in vitro against a panel of clinically important fungi and bacteria, including mycobacteria. Some of the compounds inhibited the growth of mycobacteria in the range of micromolar concentrations and retained this activity also against multidrug-resistant clinical isolates. Half the maximal inhibitory concentrations against the HepG2 cell line indicated an acceptable toxicological profile. No growth inhibition of other bacteria and fungi demonstrated selectivity of the compounds against mycobacteria. The structure-activity relationships have been derived and supported with a molecular docking study, which confirmed a selectivity toward the potential target leucyl-tRNA synthetase without an impact on the human enzyme. The presented compounds can become important materials in antimycobacterial research.


Subject(s)
Amino Acyl-tRNA Synthetases , Anti-Infective Agents , Mycobacterium tuberculosis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antitubercular Agents/pharmacology , Fungi , Microbial Sensitivity Tests , Molecular Docking Simulation , Structure-Activity Relationship , Amides/chemistry , Amides/pharmacology
9.
ACS Infect Dis ; 9(1): 79-96, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36577009

ABSTRACT

Apart from the SARS-CoV-2 virus, tuberculosis remains the leading cause of death from a single infectious agent according to the World Health Organization. As part of our long-term research, we prepared a series of hybrid compounds combining pyrazinamide, a first-line antitubercular agent, and 4-aminosalicylic acid (PAS), a second-line agent. Compound 11 was found to be the most potent, with a broad spectrum of antimycobacterial activity and selectivity toward mycobacterial strains over other pathogens. It also retained its in vitro activity against multiple-drug-resistant mycobacterial strains. Several structural modifications were attempted to improve the in vitro antimycobacterial activity. The δ-lactone form of compound 11 (11') had more potent in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Compound 11 was advanced for in vivo studies, where it was proved to be nontoxic in Galleria mellonella and zebrafish models, and it reduced the number of colony-forming units in spleens in the murine model of tuberculosis. Biochemical studies showed that compound 11 targets mycobacterial dihydrofolate reductases (DHFR). An in silico docking study combined with molecular dynamics identified a viable binding mode of compound 11 in mycobacterial DHFR. The lactone 11' opens in human plasma to its parent compound 11 (t1/2 = 21.4 min). Compound 11 was metabolized by human liver fraction by slow hydrolysis of the amidic bond (t1/2 = 187 min) to yield PAS and its starting 6-chloropyrazinoic acid. The long t1/2 of compound 11 overcomes the main drawback of PAS (short t1/2 necessitating frequent administration of high doses of PAS).


Subject(s)
Aminosalicylic Acid , COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Pyrazinamide/pharmacology , Aminosalicylic Acid/pharmacology , Zebrafish , SARS-CoV-2 , Antitubercular Agents/chemistry , Tuberculosis/drug therapy , Lactones
10.
Biomolecules ; 12(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36358911

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) poses a significant threat to mankind and as such earned its place on the WHO list of priority pathogens. New antimycobacterials with a mechanism of action different to currently used agents are highly required. This study presents the design, synthesis, and biological evaluation of 3-acylaminopyrazine-2-carboxamides derived from a previously reported inhibitor of human prolyl-tRNA synthetase. Compounds were evaluated in vitro against various strains of mycobacteria, pathogenic bacteria, and fungi of clinical significance. In general, high activity against mycobacteria was noted, while the antibacterial and antifungal activity was minimal. The most active compounds were 4'-substituted 3-(benzamido)pyrazine-2-carboxamides, exerting MIC (Minimum Inhibitory Concentration) from 1.95 to 31.25 µg/mL. Detailed structure-activity relationships were established and rationalized in silico with regard to mycobacterial ProRS as a probable target. The active compounds preserved their activity even against multidrug-resistant strains of Mycobacterium tuberculosis. At the same time, they were non-cytotoxic against HepG2 human hepatocellular carcinoma cells. This project is the first step in the successful repurposing of inhibitors of human ProRS to inhibitors of mycobacterial ProRS with antimycobacterial activity.


Subject(s)
Amino Acyl-tRNA Synthetases , Mycobacterium tuberculosis , Humans , Antitubercular Agents/pharmacology , Adenosine/pharmacology , Microbial Sensitivity Tests
11.
Front Microbiol ; 13: 912467, 2022.
Article in English | MEDLINE | ID: mdl-36060765

ABSTRACT

The greatest threat and medicinal impact within gram-positive pathogens are posed by two bacterial genera, Staphylococcus and Enterococcus. Chalcones have a wide range of biological activities and are recognized as effective templates in medicinal chemistry. This study provides comprehensive insight into the anti-staphylococcal and anti-enterococcal activities of two recently published brominated and chlorinated pyrazine-based chalcones, CH-0y and CH-0w. Their effects against 4 reference and 12 staphylococcal and enterococcal clinical isolates were evaluated. Bactericidal action, the activity in combination with selected conventional antibiotics, the study of post-antimicrobial effect (PAE, PAE/SME), and in vitro and in vivo toxicity, were included. In CH-0y, anti-staphylococcal activity ranging from MIC = 15.625 to 62.5 µM, and activity against E. faecium from 31.25 to 62.5 µM was determined. In CH-0w, anti-staphylococcal activity ranging from 31.25 to 125 µM, and activity against E. faecium and E. faecalis (62.5 µM) was revealed. Both CH-0y and CH-0w showed bactericidal action, beneficial impact on bacterial growth delay within PAE and PAE/SME studies, and non/low toxicity in vivo. Compared to CH-0w, CH-0y seems to have higher anti-staphylococcal and less toxic potential. In conclusion, chalcones CH-0y and CH-0w could be considered as structural pattern for future adjuvants to selected antibiotic drugs.

12.
Plant Sci ; 325: 111453, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36087885

ABSTRACT

ARM was identified previously as an interaction partner of the telomerase protein subunit (TERT) in Arabidopsis thaliana. To investigate the interconnection between ARM and telomerase and to identify ARM cellular functions, we analyzed a set of arm mutant lines and arm/tert double mutants. Telomere length was not affected in arm single mutant plants, in contrast to double mutants. In the second generation of homozygous arm-1/tert double mutants following the heterozygous state during the double mutant construction, telomeres shortened dramatically, even below levels in tert plants displaying severe morphological defects. Intriguingly, homozygous arm-1/tert double mutants with short telomeres grew without obvious phenotypic changes for next two generations. Then, in agreement with the onset of phenotypic changes in tert, morphological defects were timed to the 5th arm-1/tert homozygous generation. RNAseq analyses of arm-1/tert and respective single mutants displayed markedly overlapping sets of differentially expressed genes in arm-1/tert double mutant and arm-1 single mutant lines, indicating a dominant effect of the ARM mutation. RNAseq data further implied ARM involvement in circadian rhythms, responses to drugs and to biotic and abiotic stimuli. In agreement with it, we observed sensitivity of arm-1 single mutant to the heat stress during germination. Altogether, our results suggest ARM involvement in crucial cellular processes without evidencing its role in the telomerase canonical function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Telomerase , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Germination , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Stress, Physiological
13.
Biomolecules ; 12(6)2022 06 17.
Article in English | MEDLINE | ID: mdl-35740968

ABSTRACT

Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis. The increasing incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has created a need for new antiTB agents with new chemical scaffolds to combat the disease. Thus, the key question is: how to search for new antiTB and where to look for them? One of the possibilities is to search among natural products (NPs). In order to search for new antiTB drugs, the detailed phytochemical study of the whole Dicranostigma franchetianum plant was performed isolating wide spectrum of isoquinoline alkaloids (IAs). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. Alkaloids were screened against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. avium, M. kansasii, and M. smegmatis). Alkaloids 3 and 5 showed moderate antimycobacterial activity against all tested strains (MICs 15.625-31.25 µg/mL). Furthermore, ten semisynthetic berberine (16a-16k) derivatives were developed and tested for antimycobacterial activity. In general, the derivatization of berberine was connected with a significant increase in antimycobacterial activity against all tested strains (MICs 0.39-7.81 µg/mL). Two derivatives (16e, 16k) were identified as compounds with micromolar MICs against M. tuberculosis H37Ra (MIC 2.96 and 2.78 µM). All compounds were also evaluated for their in vitro hepatotoxicity on a hepatocellular carcinoma cell line (HepG2), exerting lower cytotoxicity profile than their MIC values, thereby potentially reaching an effective concentration without revealing toxic side effects.


Subject(s)
Berberine , Mycobacterium tuberculosis , Papaveraceae , Tuberculosis , Anti-Bacterial Agents/pharmacology , Berberine/pharmacology , Humans , Microbial Sensitivity Tests
14.
Pharmaceuticals (Basel) ; 15(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35631406

ABSTRACT

Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k'w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial ß-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.

15.
Bioorg Chem ; 118: 105489, 2022 01.
Article in English | MEDLINE | ID: mdl-34826708

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is the number one cause of deaths due to a single infectious agent worldwide. The treatment of TB is lengthy and often complicated by the increasing drug resistance. New compounds with new mechanisms of action are therefore needed. We present the design, synthesis, and biological evaluation of pyrazine-based inhibitors of a prominent antimycobacterial drug target - mycobacterial methionine aminopeptidase 1 (MtMetAP1). The inhibitory activities of the presented compounds were evaluated against the MtMetAP1a isoform, and all derivatives were tested against a broad spectrum of myco(bacteria) and fungi. The cytotoxicity of the compounds was also investigated using Hep G2 cell lines. Overall, high inhibition of the isolated enzyme was observed for 3-substituted N-(thiazol-2-yl)pyrazine-2-carboxamides, particularly when the substituent was represented by 2-substituted benzamide. The extent of inhibition was strongly dependent on the used metal cofactor. The highest inhibition was seen in the presence of Ni2+. Several compounds also showed mediocre in vitro potency against Mtb (both Mtb H37Ra and H37Rv). Despite the structural similarities of bacterial and fungal MetAP1 to mycobacterial MtMetAP1, title compounds did not exert antibacterial nor antifungal activity. The reasons behind the higher activity of 2-substituted benzamido derivatives, as well as the correlation of enzyme inhibition with the in vitro growth inhibition activity is discussed.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazines/pharmacology , Aminopeptidases/metabolism , Antitubercular Agents , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
16.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34959630

ABSTRACT

A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.

17.
Future Med Chem ; 13(22): 1945-1962, 2021 11.
Article in English | MEDLINE | ID: mdl-34633218

ABSTRACT

Background: Increasing resistance has resulted in an urgent need for new antimicrobial drugs. A systematic me-too approach was chosen to modify clinically used sulfonamides to obtain their imines. Methods & results: Twenty-five compounds were synthesized and evaluated for their antibacterial activity. The most active compounds were also investigated against methicillin- and trimethoprim/sulfamethoxazole (SMX)-resistant Gram-positive species. Staphylococci shared the highest susceptibility including resistant strains with minimum inhibitory concentrations from 3.91 µM (≥2.39 µg ml-1). Crucially, the compounds inhibit MRSA and trimethoprim/SMX-resistant Staphylococci without any cross-resistance. Modification of parent sulfonamides turned a bacteriostatic effect into a bactericidal effect. Toxicity for HepG2 and hemolytic properties were also determined. Conclusions: The presence of a dihalogenated salicylidene moiety is required for optimal activity. Based on toxicity, promising derivatives for further investigation were identified.


Subject(s)
Aldehydes/pharmacology , Anti-Bacterial Agents/pharmacology , Imines/pharmacology , Staphylococcus/drug effects , Sulfonamides/pharmacology , Aldehydes/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial/drug effects , Imines/chemistry , Microbial Sensitivity Tests , Molecular Structure , Sulfonamides/chemistry
18.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34641567

ABSTRACT

The search for novel antimycobacterial drugs is a matter of urgency, since tuberculosis is still one of the top ten causes of death from a single infectious agent, killing more than 1.4 million people worldwide each year. Nine Amaryllidaceae alkaloids (AAs) of various structural types have been screened for their antimycobacterial activity. Unfortunately, all were considered inactive, and thus a pilot series of aromatic esters of galanthamine, 3-O-methylpancracine, vittatine and maritidine were synthesized to increase biological activity. The semisynthetic derivatives of AAs were screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra and two other mycobacterial strains (M. aurum, M. smegmatis) using a modified Microplate Alamar Blue Assay. The most active compounds were also studied for their in vitro hepatotoxicity on the hepatocellular carcinoma cell line HepG2. In general, the derivatization of the original AAs was associated with a significant increase in antimycobacterial activity. Several pilot derivatives were identified as compounds with micromolar MICs against M. tuberculosis H37Ra. Two derivatives of galanthamine, 1i and 1r, were selected for further structure optimalization to increase the selectivity index.


Subject(s)
Amaryllidaceae Alkaloids/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Mycobacterium tuberculosis/drug effects , Amaryllidaceae Alkaloids/adverse effects , Amaryllidaceae Alkaloids/pharmacology , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Hep G2 Cells , Humans , Microbial Sensitivity Tests
19.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34451864

ABSTRACT

Despite the established treatment regimens, tuberculosis remains an alarming threat to public health according to WHO. Novel agents are needed to overcome the increasing rate of resistance and perhaps achieve eradication. As part of our long-term research on pyrazine derived compounds, we prepared a series of their ortho fused derivatives, N-phenyl- and N-benzyl quinoxaline-2-carboxamides, and evaluated their in vitro antimycobacterial activity. In vitro activity against Mycobacterium tuberculosis H37Ra (represented by minimum inhibitory concentration, MIC) ranged between 3.91-500 µg/mL, with most compounds having moderate to good activities (MIC < 15.625 µg/mL). The majority of the active compounds belonged to the N-benzyl group. In addition to antimycobacterial activity assessment, final compounds were screened for their in vitro cytotoxicity. N-(naphthalen-1-ylmethyl)quinoxaline-2-carboxamide (compound 29) was identified as a potential antineoplastic agent with selective cytotoxicity against hepatic (HepG2), ovarian (SK-OV-3), and prostate (PC-3) cancer cells lines. Molecular docking showed that human DNA topoisomerase and vascular endothelial growth factor receptor could be potential targets for 29.

20.
J Org Chem ; 86(18): 12623-12643, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34283607

ABSTRACT

The present study reports an asymmetric organocatalytic cascade reaction of oxindole derivates with α,ß-unsaturated aldehydes efficiently catalyzed by simple chiral secondary amine. Spirooxindole-fused cyclopentanes were produced in excellent isolated yields (up to 98%) with excellent enantiopurities (up to 99% ee) and moderate to high diastereoselectivities. The synthetic utility of the protocol was exemplified on a set of additional transformations of the corresponding spiro compounds. In addition, a study showing the promising biological activity of selected enantioenriched products was accomplished.


Subject(s)
Cyclopentanes , Spiro Compounds , Aldehydes , Catalysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...