Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Parasitol Parasites Wildl ; 7(3): 391-397, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30370219

ABSTRACT

Outbreaks of Toxoplasma gondii and Trichinella spp. have been recurring for decades among Inuit of Nunavik, northeastern Canada. Contact with wildlife has been identified as a risk factor for Inuit exposure to T. gondii, but reservoirs have yet to be confirmed based on direct detection of DNA or organism. Similarly, little is known about the occurrence of Trichinella spp. in wildlife species of Nunavik other than walrus (Odobenus rosmarus) and bears (Ursus americanus, Ursus maritimus). Foxes (Vulpes vulpes) were targeted as possible sentinels for T. gondii and Trichinella spp. because of their high trophic position within the Arctic food chain as carnivorous scavengers. A total of 39 red foxes were sampled from four communities in southern and western Nunavik between November 2015 and September 2016. For the first time in wildlife, a novel magnetic capture DNA extraction and real-time PCR technique was used to isolate and detect T. gondii DNA from the heart and brain of foxes. A double separatory funnel digestion method followed by multiplex PCR was used to recover and genotype larvae of Trichinella spp. from tongues of foxes. Seroprevalence based on detection of antibodies to T. gondii was 41% (95% CI: 27-57%) using a commercially available modified agglutination test (MAT). Detection of DNA of T. gondii and larvae of Trichinella nativa (T2) occurred in 44% (95% CI: 28-60%) and 36% (95% CI: 21-51%) of foxes, respectively. Coinfection with both T. nativa and T. gondii occurred among 23% (95%CI: 13-38%) of foxes which can be attributed to co-transmission from prey and scavenged species in their diet. There was only moderate agreement between T. gondii serology and direct detection of T. gondii DNA using the MC-PCR technique (Kappa test statistic: 0.321), suggesting that using both methods in tandem can increase the sensitivity of detection for this parasite. These findings show that foxes are good sentinels for circulation of parasitic zoonoses in terrestrial northern ecosystems since they are highly exposed, show measurable indicators of infection and do not serve as exposure sources for humans.

2.
Food Chem ; 134(4): 1775-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23442620

ABSTRACT

Chitosan (CH)-tripolyphosphate (TPP) submicron particles were formed as carriers of entrapped rutin, and the release properties characterized using simulated gastric juices and fluids of the small intestine. Particle size, charge and entrapment efficiencies were investigated as a function of the CH:TPP molar ratio (2.0:1.0-5.0:1.0). Size was found to decrease from ~814 nm for the 2.0:1:0 mass ratio to ~528 nm for the ratios between 2.5:1.0 and 4.0:1.0, and then again to ~322 nm for the 5:0:1.0 mass ratio, whereas all particles carried a positive surface charge, increasing from +21 to +59 mV as the ratio increased from 2.0:1.0 to 5.0:1.0. The percent entrapment was found to rise from 3.68% to 57.6% as the ratios increased from 2.0:1:0 to 4.0:1:0, before reaching a plateau. Submicron particles (4.0:1.0 mass ratio only) were found to retain rutin in simulated gastric fluids, whereas in conditions which simulated fluids from the small intestine, only 20% of the entrapped rutin was released and 80% remained absorbed to the CH:TPP carriers. Such particles have applications for the delivery of phenolics in food and natural health products.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/instrumentation , Polyphosphates/chemistry , Rutin/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...