Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
JHEP Rep ; 6(5): 101023, 2024 May.
Article in English | MEDLINE | ID: mdl-38681862

ABSTRACT

Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.

2.
Nat Commun ; 13(1): 7259, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433978

ABSTRACT

Time-lapse mechanical properties of stem cell derived cardiac organoids are important biological cues for understanding contraction dynamics of human heart tissues, cardiovascular functions and diseases. However, it remains difficult to directly, instantaneously and accurately characterize such mechanical properties in real-time and in situ because cardiac organoids are topologically complex, three-dimensional soft tissues suspended in biological media, which creates a mismatch in mechanics and topology with state-of-the-art force sensors that are typically rigid, planar and bulky. Here, we present a soft resistive force-sensing diaphragm based on ultrasensitive resistive nanocracked platinum film, which can be integrated into an all-soft culture well via an oxygen plasma-enabled bonding process. We show that a reliable organoid-diaphragm contact can be established by an 'Atomic Force Microscope-like' engaging process. This allows for instantaneous detection of the organoids' minute contractile forces and beating patterns during electrical stimulation, resuscitation, drug dosing, tissue culture, and disease modelling.


Subject(s)
Diaphragm , Organoids , Humans , Heart , Thorax , Mechanical Phenomena
3.
J Tissue Eng ; 13: 20417314221140979, 2022.
Article in English | MEDLINE | ID: mdl-36600999

ABSTRACT

Due to a relative paucity of studies on human lymphatic assembly in vitro and subsequent in vivo transplantation, capillary formation and survival of primary human lymphatic (hLEC) and blood endothelial cells (hBEC) ± primary human vascular smooth muscle cells (hvSMC) were evaluated and compared in vitro and in vivo. hLEC ± hvSMC or hBEC ± hvSMC were seeded in a 3D porous scaffold in vitro, and capillary percent vascular volume (PVV) and vascular density (VD)/mm2 assessed. Scaffolds were also transplanted into a sub-cutaneous rat wound with morphology/morphometry assessment. Initially hBEC formed a larger vessel network in vitro than hLEC, with interconnected capillaries evident at 2 days. Interconnected lymphatic capillaries were slower (3 days) to assemble. hLEC capillaries demonstrated a significant overall increase in PVV (p = 0.0083) and VD (p = 0.0039) in vitro when co-cultured with hvSMC. A similar increase did not occur for hBEC + hvSMC in vitro, but hBEC + hvSMC in vivo significantly increased PVV (p = 0.0035) and VD (p = 0.0087). Morphology/morphometry established that hLEC vessels maintained distinct cell markers, and demonstrated significantly increased individual vessel and network size, and longer survival than hBEC capillaries in vivo, and established inosculation with rat lymphatics, with evidence of lymphatic function. The porous polyurethane scaffold provided advantages to capillary network formation due to its large (300-600 µm diameter) interconnected pores, and sufficient stability to ensure successful surgical transplantation in vivo. Given their successful survival and function in vivo within the porous scaffold, in vitro assembled hLEC networks using this method are potentially applicable to clinical scenarios requiring replacement of dysfunctional or absent lymphatic networks.

4.
Cardiovasc Res ; 117(3): 918-929, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32251516

ABSTRACT

AIMS: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction. METHODS AND RESULTS: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs. CONCLUSIONS: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.


Subject(s)
Myocardial Infarction/surgery , Myocardium/pathology , Proteome , Regeneration , Secretome , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Antigens, Surface/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Culture Media, Conditioned/metabolism , Disease Models, Animal , Fibrosis , Humans , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Neovascularization, Physiologic , Proteomics , Rats, Nude , Stem Cell Transplantation/instrumentation , Time Factors
5.
Bioelectricity ; 2(4): 391-398, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-34476368

ABSTRACT

Background: Cardiomyocytes derived from pluripotent stem cells are immature. Maturation of cardiomyocytes is a multifactorial dynamic process that involves various factors in vivo that cannot be fully recapitulated in vitro. Here, we report a novel tissue engineering chamber with an integrated electrical stimulator and electrodes that will allow wireless electrical stimulation of cardiac tissue in vivo. Materials and Methods: Immunocompromised rats were implanted with tissue engineering chambers containing the stimulator and electrodes, and control chambers (chambers with electrical stimulator but without the electrodes) in the contralateral limb. Each chamber contained cardiomyocytes derived from human induced pluripotent stem cells (iPSCs). After 7 days of chamber implantation, the electrical stimulators were activated for 4 h per day, for 21 consecutive days. Results: At 4 weeks postimplantation, cardiomyocytes derived from human iPSCs survived, were assembled into compact cardiac tissue, and were perfused and vascularized by the host neovessels. Conclusion: This proof-of-principle study demonstrates the biocompatibility of the tissue engineering chamber with integrated electrical stimulator and electrodes. This could be utilized to study the influence of continuous electrical stimulation on vascularized cardiac or other tissues in vivo.

6.
Stem Cells Int ; 2019: 6380135, 2019.
Article in English | MEDLINE | ID: mdl-31641358

ABSTRACT

Human induced pluripotent stem cells (iPSCs) can be differentiated in vitro into bona fide cardiomyocytes for disease modelling and personalized medicine. Mitochondrial morphology and metabolism change dramatically as iPSCs differentiate into mesodermal cardiac lineages. Inhibiting mitochondrial fission has been shown to promote cardiac differentiation of iPSCs. However, the effect of hydrazone M1, a small molecule that promotes mitochondrial fusion, on cardiac mesodermal commitment of human iPSCs is unknown. Here, we demonstrate that treatment with M1 promoted mitochondrial fusion in human iPSCs. Treatment of iPSCs with M1 during embryoid body formation significantly increased the percentage of beating embryoid bodies and expression of cardiac-specific genes. The pro-fusion and pro-cardiogenic effects of M1 were not associated with changes in expression of the α and ß subunits of adenosine triphosphate (ATP) synthase. Our findings demonstrate for the first time that hydrazone M1 is capable of promoting cardiac differentiation of human iPSCs, highlighting the important role of mitochondrial dynamics in cardiac mesoderm lineage specification and cardiac development. M1 and other mitochondrial fusion promoters emerge as promising molecular targets to generate lineages of the heart from human iPSCs for patient-specific regenerative medicine.

7.
Acta Biomater ; 94: 281-294, 2019 08.
Article in English | MEDLINE | ID: mdl-31152943

ABSTRACT

Tissue flaps are used to cover large/poorly healing wounds, but involve complex surgery and donor site morbidity. In this study a tissue flap is assembled using the mammalian body as a bioreactor to functionally connect an artery and vein to a human capillary network assembled from induced pluripotent stem cell-derived endothelial cells (hiPSC ECs). In vitro: Porous NovoSorb™ scaffolds (3 mm × 1.35 mm) were seeded with 200,000 hiPSC ECs ±â€¯100,000 human vascular smooth muscle cells (hvSMC), and cultured for 1-3 days, with capillaries formed by 24 h which were CD31+, VE-Cadherin+, EphB4+, VEGFR2+ and Ki67+, whilst hvSMCs (calponin+) attached abluminally. In vivo: In SCID mice, bi-lateral epigastric vascular pedicles were isolated in a silicone chamber for a 3 week 'delay period' for pedicle capillary sprouting, then reopened, and two hiPSC EC ±â€¯hvSMCs seeded scaffolds transplanted over the pedicle. The chamber was either resealed (Group 1), or removed and surrounding tissue secured around the pedicle + scaffolds (Group 2), for 1 or 2 weeks. Human capillaries survived in vivo and were CD31+, VE-Cadherin+ and VEGFR2+. Human vSMCs remained attached, and host mesenchymal cells also attached abluminally. Systemically injected FITC-dextran present in human capillary lumens indicated inosculation to host capillaries. Human iPSC EC capillary morphometric parameters at one week in vivo were equal to or higher than the same parameters measured in human abdominal skin. This 'proof of concept' study has demonstrated that bio-engineering an autologous human tissue flap based on hiPSC EC could minimize the use of donor flaps and has potential applications for complex wound coverage. STATEMENT OF SIGNIFICANCE: Tissue flaps, used for surgical reconstruction of wounds, require complex surgery, often associated with morbidity. Bio-engineering a simpler alternative, we assembled a human induced pluripotent stem cell derived endothelial cell (hiPSC ECs) capillary network in a porous scaffold in vitro, which when transplanted over a mouse vascular pedicle in vivo formed a functional tissue flap with mouse blood flow in the human capillaries. Therefore it is feasible to form an autologous tissue flap derived from a hiPSC EC capillary network assembled in vitro, and functionally connect to a vascular pedicle in vivo that could be utilized in complex wound repair for chronic or acute wounds.


Subject(s)
Capillaries/metabolism , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Neovascularization, Physiologic , Polyurethanes/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Capillaries/cytology , Cell Line , Endothelial Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mice, SCID , Porosity , Plastic Surgery Procedures
8.
Cell Death Discov ; 4: 39, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29531836

ABSTRACT

Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying the cardiac developmental process in vitro, and cardiomyocytes derived from iPSCs are a putative cell source for personalized medicine. Changes in mitochondrial morphology have been shown to occur during cellular reprogramming and pluripotent stem cell differentiation. However, the relationships between mitochondrial dynamics and cardiac mesoderm commitment of iPSCs remain unclear. Here we demonstrate that changes in mitochondrial morphology from a small granular fragmented phenotype in pluripotent stem cells to a filamentous reticular elongated network in differentiated cardiomyocytes are required for cardiac mesodermal differentiation. Genetic and pharmacological inhibition of the mitochondrial fission protein, Drp1, by either small interfering RNA or Mdivi-1, respectively, increased cardiac mesoderm gene expression in iPSCs. Treatment of iPSCs with Mdivi-1 during embryoid body formation significantly increased the percentage of beating embryoid bodies and expression of cardiac-specific genes. Furthermore, Drp1 gene silencing was accompanied by increased mitochondrial respiration and decreased aerobic glycolysis. Our findings demonstrate that shifting the balance of mitochondrial morphology toward fusion by inhibition of Drp1 promoted cardiac differentiation of human iPSCs with a metabolic shift from glycolysis towards oxidative phosphorylation. These findings suggest that Drp1 may represent a new molecular target for future development of strategies to promote the differentiation of human iPSCs into cardiac lineages for patient-specific cardiac regenerative medicine.

9.
PLoS One ; 11(2): e0149799, 2016.
Article in English | MEDLINE | ID: mdl-26900837

ABSTRACT

Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 µm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 µL in collagen scaffold vs 22.5±2.3 µL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 µL in collagen scaffold with human ASCs vs 25.7±1.9 µL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo.


Subject(s)
Collagen/chemistry , Endothelial Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cattle , Cells, Cultured , Fibrinogen , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
10.
J Autoimmun ; 38(4): 381-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22537464

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by the production of autoantibodies against nuclear components. Lyn-deficient mice are an excellent animal model of SLE manifesting clinical, pathological and biochemical features seen in the human disease. They develop autoreactive antibodies, glomerulonephritis and show generalized inflammation, and their B cells have a hyperactive phenotype. Since loss of Lyn confers hyper-activation of phosphoinositide 3-kinase (PI3K) signaling, we studied the effect of down-modulating PI3K in Lyn-deficient mice. We found that heterozygous inactivation of the p110δ isoform of PI3K was sufficient to restrain disease in Lyn-deficient mice, leading to significantly decreased autoantibody development and autoimmune-mediated kidney pathology, and improved survival. Intriguingly, haploinsufficiency of p110δ did not dampen signaling in Lyn-deficient B cells. However, plasma cell numbers, serum immunoglobulin titers, inflammation and T cell signaling and activation were significantly moderated in Lyn(-/-)p110δ(+/KD) mice. Importantly, we have shown that haploinsufficiency of p110δ has minor effects on the B cell compartment per se but leads to significant defects in T cell activation and B cell class-switching. These studies suggest that agents targeting p110δ PI3K need not achieve full blockade of the enzyme to be of great benefit in the treatment of SLE.


Subject(s)
Autoimmune Diseases/immunology , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Alleles , Animals , Antibodies, Antinuclear/genetics , Antibodies, Antinuclear/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/mortality , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Class I Phosphatidylinositol 3-Kinases , Genotype , Haploinsufficiency/genetics , Haploinsufficiency/immunology , Hyperplasia , Kidney/metabolism , Kidney/pathology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Plasma Cells/cytology , Plasma Cells/immunology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , src-Family Kinases/deficiency , src-Family Kinases/genetics
11.
J Biol Chem ; 286(50): 43229-40, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22002247

ABSTRACT

Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.


Subject(s)
Actins/metabolism , Adipocytes/metabolism , Glucose Transporter Type 4/metabolism , Guanine Nucleotide Exchange Factors/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Membrane/drug effects , Cell Membrane/metabolism , Fluorescent Antibody Technique, Indirect , Guanine Nucleotide Exchange Factors/genetics , Immunoblotting , Insulin/pharmacology , Mice , Protein Binding/drug effects , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , Protein Transport/drug effects , Protein Transport/genetics , RNA, Small Interfering , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
12.
Methods Mol Biol ; 462: 223-39, 2009.
Article in English | MEDLINE | ID: mdl-19160673

ABSTRACT

Phosphatidylinositol 3,4,5 trisphosphate [PtdIns(3,4,5)P3] is a potent membrane-bound signaling molecule transiently synthesized by phosphoinositide 3-kinase (PI3-kinase) in response to extracellular agonists. PtdIns(3,4,5)P3 signals need to be strictly controlled. PtdIns(3,4,5)P3 recruits and binds effectors that function in oncogenic signaling pathways. PtdIns(3,4,5)P3 activates cell proliferation, growth, and migration as well as regulating insulin signaling. The inositol polyphosphate 5-phosphatase family of enzymes dephosphorylate and thereby modulate PtdIns(3,4,5)P3 levels, attenuating PI3-kinase-dependent signaling. PtdIns(3,4,5)P3 5-phosphatase enzyme activity can be assessed in vitro by analysis of the hydrolysis of radiolabeled or fluorescently labeled PtdIns(3,4,5)P3 and in vivo by visualization of the recruitment and turnover of the PtdIns(3,4,5)P3-specific biosensor GFP-PH/ ARNO or other PtdIns(3,4,5)P3 binding proteins at the plasma membrane.


Subject(s)
Phosphoric Monoester Hydrolases/analysis , Phosphoric Monoester Hydrolases/metabolism , Animals , Blotting, Western , COS Cells , Chlorocebus aethiops , Fluorescent Antibody Technique , Immunoprecipitation , Microscopy, Confocal , Phosphoric Monoester Hydrolases/isolation & purification , Recombinant Proteins/analysis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Staining and Labeling , Transfection
13.
Blood ; 110(13): 4480-91, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17682126

ABSTRACT

Macrophages phagocytose particles to resolve infections and remove apoptotic cells. Phosphoinositide 3-kinase generates phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is restricted to the phagocytic cup, promoting phagocytosis. The PtdIns(3,4,5)P(3) 5-phosphatase (5-ptase) Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) inhibits phagocytosis. We report here that another PtdIns(3,4,5)P(3)-5-ptase, the 72-kDa-5-phosphatase (72-5ptase), inhibits Fcgamma receptor (FcgammaR)- but not complement receptor 3 (CR3)-mediated phagocytosis, affecting pseudopod extension and phagosome closure. In contrast, SHIP1 inhibited FcgammaR and CR3 phagocytosis with greater effects on CR3-stimulated phagocytosis. The 72-5ptase and SHIP1 were both dynamically recruited to FcgammaR-stimulated phagocytic cups, but only SHIP1 was recruited to CR3-stimulated phagocytic cups. To determine whether 5-ptases focally degrade PtdIns(3,4,5)P(3) at the phagocytic cup after specific stimuli, time-lapse imaging of specific biosensors was performed. Transfection of dominant-negative 72-5ptase or 72-5ptase small interfering RNA (siRNA) resulted in amplified and prolonged PtdIns(3,4,5)P(3) at the phagocytic cup in response to FcgammaR- but not CR3-stimulation. In contrast, macrophages from Ship1(-/-)/AktPH-GFP transgenic mice exhibited increased and sustained PtdIns(3,4,5)P(3) at the cup in response to CR3 activation, with minimal changes to FcgammaR activation. Therefore, 72-5ptase and SHIP1 exhibit specificity in regulating FcgammaR- versus CR3-stimulated phagocytosis by controlling the amplitude and duration of PtdIns(3,4,5)P(3) at the phagocytic cup.


Subject(s)
Macrophage-1 Antigen/physiology , Macrophages/immunology , Phagocytosis/immunology , Phosphoric Monoester Hydrolases/physiology , Receptors, IgG/immunology , Animals , Cell Line , Inositol Polyphosphate 5-Phosphatases , Macrophages/enzymology , Macrophages/ultrastructure , Mice , Mice, Transgenic , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/deficiency , Protein Transport , Pseudopodia
14.
Mol Cell Biol ; 26(16): 6065-81, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16880518

ABSTRACT

Exogenous delivery of carrier-linked phosphatidylinositol 3-phosphate [PtdIns(3)P] to adipocytes promotes the trafficking, but not the insertion, of the glucose transporter GLUT4 into the plasma membrane. However, it is yet to be demonstrated if endogenous PtdIns(3)P regulates GLUT4 trafficking and, in addition, the metabolic pathways mediating plasma membrane PtdIns(3)P synthesis are uncharacterized. In unstimulated 3T3-L1 adipocytes, conditions under which PtdIns(3,4,5)P3 was not synthesized, ectopic expression of wild-type, but not catalytically inactive 72-kDa inositol polyphosphate 5-phosphatase (72-5ptase), generated PtdIns(3)P at the plasma membrane. Immunoprecipitated 72-5ptase from adipocytes hydrolyzed PtdIns(3,5)P2, forming PtdIns(3)P. Overexpression of the 72-5ptase was used to functionally dissect the role of endogenous PtdIns(3)P in GLUT4 translocation and/or plasma membrane insertion. In unstimulated adipocytes wild type, but not catalytically inactive, 72-5ptase, promoted GLUT4 translocation and insertion into the plasma membrane but not glucose uptake. Overexpression of FLAG-2xFYVE/Hrs, which binds and sequesters PtdIns(3)P, blocked 72-5ptase-induced GLUT4 translocation. Actin monomer binding, using latrunculin A treatment, also blocked 72-5ptase-stimulated GLUT4 translocation. 72-5ptase expression promoted GLUT4 trafficking via a Rab11-dependent pathway but not by Rab5-mediated endocytosis. Therefore, endogenous PtdIns(3)P at the plasma membrane promotes GLUT4 translocation.


Subject(s)
Cell Membrane/enzymology , Glucose Transporter Type 4/metabolism , Phosphatidylinositol Phosphates/biosynthesis , Phosphoric Monoester Hydrolases/metabolism , 3T3-L1 Cells , Actins/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/enzymology , Animals , Cell Differentiation , Cells, Cultured , Gene Expression , Hydrolysis/drug effects , Inositol Polyphosphate 5-Phosphatases , Insulin/pharmacology , Mice , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Transport/drug effects , rab GTP-Binding Proteins/metabolism
15.
Int J Biochem Cell Biol ; 37(11): 2260-5, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15964236

ABSTRACT

Phosphoinositides are membrane-bound signaling molecules that recruit, activate and localize target effectors to intracellular membranes regulating apoptosis, cell proliferation, insulin signaling and membrane trafficking. The SH2 domain containing inositol polyphosphate 5-phosphatase-2 (SHIP2) hydrolyzes phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generating phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). Overexpression of SHIP2 inhibits insulin-stimulated phosphoinositide 3-kinase (PI3K) dependent signaling events. Analysis of diabetic human subjects has revealed an association between SHIP2 gene polymorphisms and type 2 diabetes mellitus. Genetic ablation of SHIP2 in mice has generated conflicting results. SHIP2 knockout mice were originally reported to show lethal neonatal hypoglycemia resulting from insulin hypersensitivity, but in addition to inactivating the SHIP2 gene, the Phox2a gene was also inadvertently deleted. Another SHIP2 knockout mouse has now been generated which inactivates the SHIP2 gene but leaves Phox2a intact. These animals show normal insulin and glucose tolerance but are highly resistant to weight gain on high fat diets, exhibiting an obesity-resistant phenotype. Therefore, SHIP2 remains a significant therapeutic target for the treatment of both obesity and type 2 diabetes.


Subject(s)
Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/metabolism , src Homology Domains , Animals , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/genetics , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/genetics , Polymorphism, Genetic , Second Messenger Systems/physiology
16.
Blood ; 102(3): 940-8, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12676785

ABSTRACT

The platelet receptor for the von Willebrand factor (VWF) glycoprotein Ib-IX-V (GPIb-IX-V) complex mediates platelet adhesion at sites of vascular injury. The cytoplasmic tail of the GPIbalpha subunit interacts with the actin-binding protein, filamin, anchoring the receptor in the cytoskeleton. In motile cells, the second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3) induces submembraneous actin remodeling. The inositol polyphosphate 5-phosphatase, Src homology 2 domain-containing inositol polyphosphate 5-phosphatase-2 (SHIP-2), hydrolyzes PtdIns(3,4,5)P3 forming phosphatidylinositol 3,4 bisphosphate (PtdIns(3,4)P2) and regulates membrane ruffling via complex formation with filamin. In this study we investigate the intracellular location and association of SHIP-2 with filamin, actin, and the GPIb-IX-V complex in platelets. Immunoprecipitation of SHIP-2 from the Triton-soluble fraction of unstimulated platelets demonstrated association between SHIP-2, filamin, actin, and GPIb-IX-V. SHIP-2 associated with filamin or GPIb-IX-V was active and demonstrated PtdIns(3,4,5)P3 5-phosphatase activity. Following thrombin or VWF-induced platelet activation, detection of the SHIP-2, filamin, and receptor complex decreased in the Triton-soluble fraction, although in control studies the level of SHIP-2, filamin, or GPIb-IX-V immunoprecipitated by their respective antibodies did not change following platelet activation. In activated platelets spreading on a VWF matrix, SHIP-2 localized intensely with actin at the central actin ring and colocalized with actin and filamin at filopodia and lamellipodia. In spread platelets, GPIb-IX-V localized to the center of the platelet and showed little colocalization with filamin at the plasma membrane. These studies demonstrate a functionally active complex between SHIP-2, filamin, actin, and GPIb-IX-V that may orchestrate the localized hydrolysis of PtdIns(3,4,5)P3 and thereby regulate cortical and submembraneous actin.


Subject(s)
Blood Platelets/cytology , Cytoskeletal Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Actins/metabolism , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Cell Size , Contractile Proteins/metabolism , Cytoskeleton/metabolism , Filamins , Humans , Microfilament Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Platelet Activation , Protein Binding
17.
IUBMB Life ; 53(1): 25-36, 2002 Jan.
Article in English | MEDLINE | ID: mdl-12018404

ABSTRACT

Recent studies have identified the inositol polyphosphate 5-phosphatases as a large family of signal modifying enzymes comprising 10 mammalian and 4 yeast family members. A number of investigations including gene-targeted deletion of 5-phosphatases in mice have demonstrated that these enzymes regulate many important cellular events including hematopoietic cell proliferation and activation, insulin signaling, endocytosis, and actin polymerization.


Subject(s)
Phosphoric Monoester Hydrolases/metabolism , Animals , Calcium Signaling , Gene Targeting , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Inositol Phosphates/metabolism , Inositol Polyphosphate 5-Phosphatases , Insulin/metabolism , Models, Biological , Oculocerebrorenal Syndrome/enzymology , Oculocerebrorenal Syndrome/genetics , Phosphoric Monoester Hydrolases/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Signal Transduction , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...