Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37311233

ABSTRACT

Aloe genus plants are perennial evergreen herb belonging to Liliaceae family which is widely used in food, medicine, beauty, and health care (Kumar et al. 2019). In August 2021, symptoms of root and stem rot was observed in approximately 20% of Aloe vera plantings in Yuanjiang County, Yunnan Province, China (23° 64' 53" N, 101° 99' 84" E). The most typical symptoms were stem and root rot, browning and necrosis of vascular tissues, gradual greening, and reddish-browning of leaves from bottom to top, abscission, and eventual plant death (Fig. S1). Therefore, to isolate and identify the pathogen, the plants showing the above symptoms were collected. The plant tissues were cut from the edges of root and stem lesions, followed by disinfection with 75% ethanol for 1 min, rinsed three times with sterilized distilled water, and cut into 3 × 3 mm small squares after excision of marginal tissues. The tissues were transferred to the oomycetes selective medium (Liu et al. 2022) and incubated at 28 °C in the dark for 3~5 days, and suspected colonies were purified. The colonies were then inoculated onto potato dextrose agar (PDA), V8-juice agar (V8), and oatmeal agar (OA) medium plates for morphological characteristics. Finally, 18 isolates with the same colonial and morphological characteristics were obtained from 30 lesioned tissue and one of them was named as ARP1. On PDA, V8 and OA medium plates, the ARP1 colonies were white. On PDA plate, the mycelia were dense and the colonies were petal-like; on V8 plate, the mycelia were cashmere and the colonies were radial or star-like. Whereas, on OA plate, the mycelia were cotton-like and the colonies were fluffy and radial (Fig. S2 A~C). Mycelium did not have septum with high branching and swelling. Sporangia were abundant, semi-papillate, varying in shape from ovoid-ellipsoid to long-ellipsoid, 18-26 × 45-63 µm (average: 22 × 54 µm, n = 30), sporangia released numerous zoospores from the papillate after maturation. The chlamydospores were spherical, 20-35 µm in diameter (average: 27.5 µm, n = 30) (Fig. S2 D~F). These morphological features were like those of the pathogenic species of the oomycetes (Chen et al. 2022). For the molecular characterization, the genomic DNA of the isolate was extracted using the cetyl trimethyl ammonium bromide method, and the translation elongation factor 1α (tef-1α) (Stielow et al. 2015), ß-tubulin (ß-tub) (Kroon et al. 2004) and internal transcribed spacer (ITS) (White et al. 1990) of isolated strain ARP1 were amplified using primer pairs EF1-1018F/EF1-1620R, TUBUF2/TUBUR1 and ITS1/ITS4, respectively. The tef-1α, ß-tub genes and ITS region of ARP1 were directly sequenced and their sequence information was deposited in GenBank under accession numbers OQ506129, OQ506127 and OQ449628. ARP1 was clustered on the same evolutionary branch with Phytophthora palmivora (Fig. S3). To confirm the pathogenicity of ARP1, the main root of A. vera was wounded to 1 cm long and 2 mm deep with a scalpel blade followed by inoculation with 50 ml suspension of ARP1 zoospores at a concentration of 1 × 106 spores / ml per potted plant, and an equal volume of water as control. All inoculated plants were placed in the greenhouse at 28°C, 12 h / 12 h light / dark. After 15 dpi, the inoculated plants showed typical symptoms of wilted and drooping leaves and stem and root rot, same as observed in the field condition (Fig. S4). After inoculation with ARP1, a strain with the same morphological and molecular characteristics as the original isolate was re-isolated, confirming Koch's postulates. To our knowledge, this is the first report of P. palmivora causing root and stem rot of A. vera in the study region. This disease could be a potential risk for aloe production and therefore appropriate management measures should be taken.

2.
J Ovarian Res ; 15(1): 70, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35668443

ABSTRACT

BACKGROUND: Mitochondrial dynamics (e.g. fission/fusion) play an important role in controlling chemoresistance in representative gynecologic malignancies, ovarian and cervical cancer. Processing the long form of Optic atrophy (L-Opa)1 is a distinctive character of mitochondrial fragmentation, associated with chemosensitivity. Here, we examined the role of prohibitin (Phb)1 in increasing L-Opa1 processing via the regulating mitochondrial protease, Oma1 and its direct interaction with p-p53 (ser15) and pro-apoptotic Bcl-2 antagonist/killer (Bak) 1 in the signaling axis and if this phenomenon is associated with prognosis of patients. METHODS: We compared Cisplatin (CDDP)-induced response of mitochondrial dynamics, molecular interaction among p-p53 (ser15)-Phb1-Bak, and chemoresponsiveness in paired chemosensitive and chemoresistant gynecologic cancer cells (ovarian and cervical cancer cell lines) using western blot, immunoprecipitation, sea horse, and immunofluorescence. Translational strategy with proximity ligation assessment in phb1-p-p53 (ser15) in human ovarian tumor sections further confirmed in vitro finding, associated with clinical outcome. RESULTS: We report that: (1) Knock-down of Phb1 prevents Cisplatin (cis-diamine-dichloroplatinum; CDDP) -induced changes in mitochondrial fragmentation and Oma1 mediated cleavage, and Opa1 processing; (2) In response to CDDP, Phb1 facilitates the p-p53 (ser15)-Phb1-Bak interaction in mitochondria in chemosensitive gynecologic cancer cells but not in chemoresistant cells; (3) Akt overexpression results in suppressed p-p53(Ser15)-Phb1 interaction and dysregulated mitochondrial dynamics, and (4) Consistent with in vitro findings, proximity ligation assessment (PLA) in human ovarian tumor sections demonstrated that p-p53(ser15)-Phb1-Bak interaction in mitochondria is associated with better chemoresponsiveness and clinical outcome of patients. Determining the molecular mechanisms by which Phb1 facilitates mitochondrial fragmentation and interacts with p53 may advance the current understanding of chemoresistance and pathogenesis of gynecologic cancer. CONCLUSION: Determining the key molecular mechanisms by which Phb1 facilitates the formation of p-p53 (ser15)-Bak-Phb1 and its involvement in the regulation of mitochondrial dynamics and apoptosis may ultimately contribute to the current understanding of molecular and cellular basis of chemoresistance in this gynecologic cancer.


Subject(s)
Antineoplastic Agents , Genital Neoplasms, Female , Ovarian Neoplasms , Uterine Cervical Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Female , Humans , Mitochondrial Dynamics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Prohibitins , Tumor Suppressor Protein p53/metabolism
3.
Plant Dis ; 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35350895

ABSTRACT

Apple production is of great economic importance in the fruit industry of China, where Yunnan Province is considered as a major producing area. A survey was conducted to identify apple trees that were problematic from March to November 2020 in Yunnan Province. Symptoms included smaller yellowing leaves, fewer sprouts per branch, browning and necrosis of the roots and lower parts of the stem bark, and wilting. 20% to 45% of apple trees were found infected and randomly scattered in the surveyed orchards. A total of 110 soil samples were collected from the root area of symptomatic apple trees in Tuanjie Town of Kunming City, Zhaotong City, and Malong District of Qujing City in Yunnan Province. Two grams of each soil sample was suspended in 400 ml of sterile water for three days and each soil extract was baited with two apple leaves (Red Fuji's). Following the baiting, those leaves were cut into 10 pieces (5mm×5mm), surface-sterilized with 70% ethanol for 30 seconds, rinsed three times with sterile water, and then air-dried. Each leaf piece was placed in a Petri dish with the oatmeal agar medium containing PCNB 20 mg/ml, rifampicin 20 mg/ml, and then incubated at 25℃ in the dark for 3 days. A mycelial agar plug was picked from the edge of the colonies and transferred to a fresh Potato Dexrose Agar (PDA) plate. Seventy colonies with similar growing characteristics were isolated from the 110 soil samples. Three isolates were retained for further analysis and named XLD8-1, SD1, and YF2. After being cultivated on PDA plates and incubated at 25℃ in the dark for 4 days, their colonies were rose petal-type and white with dense aerial hyphae (Fig 1, A). In ten days of incubation, oogonium measuring 24.55 ± 1.9µm × 20.27 ± 2.3µm and sporangia measuring 21.65 ± 1.3µm × 19.35 ± 1µm were observed (Fig 1, C, D). The total DNA of the isolates was extracted and amplified using three pairs of primers, ITS1/ITS4 (White et al. 1990), LROR/LR7 (LSU) (Vilgalys R, et al. 1990), and FM58/FM66 (COXⅡ) (Martin F N. 2000). The sequences were uploaded to GenBank (Accession No. OL960234, OK037658, OK052604 for ITS, OL960388, OM838413, OM838314 for LSU, and OM962847, OM962848, OM962849 for COXⅡ). ITS sequences of the three isolates (XLD8-1, SD1, YF2) showed 99.87%,99.87%, 99.87% similar to Pp. vexans (Accession No. AB468784, AB468784, and AM701801). LSU sequences of the three isolates showed 99.92%, 99.72%, 100% similar to Pp. vexans (Accession No. EF426541, MT729990, and EF426541). COXⅡ sequences of the three isolates showed 100%, 99.81%, 99.81% similar to Pp. vexans (Accession No. GU133560). Based on the sequence similarity and morphology, the isolates were identified as Phytopythium vexans. Koch's postulates were conducted by wounding the bases of 3 apple seedlings (1-year-old Red Fuji's) with a cork borer. A plug of mycelium of the isolate XLD8-1 grown on PDA plates was placed on each wound (Fig 1, B). Controls were set up to use sterile agar plugs as an inoculum. Seedlings have incubated an incubator at 23-26°C under the alternating light and dark intervals, 12-hours of each. In 15 days, after were inoculated with XLD8-1 the roots and lower part of the stem bark of those seedlings became brownish and necrotic, and their epidermis was easily sloughed off (Fig 1, E-G). The pathogen isolated from the necrotic root tissues were identical to the isolate XLD8-1. Symptoms of apple growth decline caused by Pp. vexans were reported in Morocco (Jabiri Salma, et al. 2021). This experiment verified that Pp. vexans causes root rot of apple. In China, Fusarium sp. is usually considered the main pathogen causing apple root rot. However, the discovery of large numbers of apple trees that were infected by Pp. vexans in Yunnan Province and the confirmation of pathogenicity of Pp. vexans on apple seedlings have demonstrated for the first time that Pp. vexans could cause apple root rot as Fusarium spp does and become an incoming threat to the apple industry, which lays the foundation for study on the disease epidemiology and integrated management of apple root rot in China. References: Jabiri Salma, et al. 2021. Microorganisms, doi:10.3390/MICROORGANISMS9091916. Martin, F. N. 2000. Mycologia, 92(4), 711-727. Vilgalys R., et al. 1990. Journal of Bacteriology, 172:4238-4246 White, T. J., et al. 1990. PCR Protocols: a guide to methods and applications, 18: 315.

4.
Int J Biol Macromol ; 157: 641-647, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-31786299

ABSTRACT

The objective of this work was to fabricate and characterize food-grade pea protein isolate (PPI) and carbohydrate polymer pullulan (PUL) nanofiber films by using green electrospinning technology. The effect of the blend ratios on the PPI/PUL solution properties (e.g. viscosity, surface tension and electrical conductivity) and morphology of the resulting electrospun nanofibers was investigated. The presence of PUL in the blends resulted in decreased apparent viscosity (P < 0.05), stable surface tension (42.09-46.26 mN/m) (P < 0.05) and lower conductivity of the solutions (P < 0.05), which were due to a better chain entanglement and decrease in the polyelectrolyte protein character, respectively, both factors were needed for uniform nanofiber (around 203 nm) formation. Rheological evaluation indicated a pseudoplastic behavior for all formulations. The Fourier transform infrared spectral changes and XRD patterns indicated that the protein and polysaccharide were well tangled in nanofibers. The results of the differential scanning calorimetry (DSC) indicate that thermal stability of the electrospun nanofiber films were improved in comparison to pure PUL. Finally, in order to expand the application range of the electrospun nanofiber films in future, thermal crosslinking method was conducted and water contact angles (WCAs) of the thermal treated nanofiber films exhibited better hydrophobic properties compared to the un-crosslinking samples.


Subject(s)
Glucans/chemistry , Nanofibers/chemistry , Pea Proteins/chemistry , Calorimetry, Differential Scanning , Glucans/isolation & purification , Hydrophobic and Hydrophilic Interactions , Pea Proteins/isolation & purification , Spectroscopy, Fourier Transform Infrared , Surface Tension
5.
Int J Biol Macromol ; 137: 224-231, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31260763

ABSTRACT

In this study, Chitosan/pullulan composite nanofiber fast dissolving oral films (FDOFs) were prepared via electrospinning technology. The ratio of chitosan/pullulan (C/P) had an influence on solution property and nanofiber morphology, with the increase of chitosan, viscosity and conductivity of solutions increased, the morphology obtained by scanning electron microscopy indicated that the diameter of nanofibers decreased initially then increased. The Fourier transform infrared spectra indicated hydrogen bond interactions between chitosan and pullulan molecules. X-ray diffraction analysis proved that electrospinning process decreased the crystallinity of materials. Thermal analysis showed that melting point, degradation temperature and glass transition temperature increased with the addition of chitosan content in the FDOF. Water solubility test proved that the FDOF can dissolve in water completely within 60 s. Finally, in order to prove its practicability in future, a model drug of aspirin was encapsulated in the FDOF successfully.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Glucans/chemistry , Nanofibers/chemistry , Nanofibers/ultrastructure , Polymers , Solubility , Spectrum Analysis , Thermogravimetry
6.
J Food Sci ; 84(5): 1068-1077, 2019 May.
Article in English | MEDLINE | ID: mdl-30990884

ABSTRACT

The influence of different addition levels (0.1% to 0.5%) of thermo-reversible curdlan gels (TRC) and thermo-irreversible curdlan gels (TIRC) on the physicochemical and textural characteristics of frankfurters, as well as dynamic rheological properties of meat batters, was investigated. Increased percentages of TRC and TIRC were associated with lower cooking loss and quicker relaxation times, as well as superior emulsion stability, and higher L* -values and b* -values of frankfurters (P < 0.05). Moreover, with equal curdlan concentrations from 0.3% to 0.5%, TRC showed higher hardness and chewiness values than those with added TIRC (P < 0.05), but the gumminess, springiness, and resilience values were almost the same between each treatment (P > 0.05). The textural profile results were in strong agreement with the rheological data. Principal component analysis revealed that certain quality attributes were affected differently by the inclusion levels of TRC and TIRC. Additionally, the distinctive mechanism of the formation of the complex meat protein network by TRC or TIRC was also clarified and verified via scanning electron microscopy analysis. Further studies will investigate the molecular interactions of meat proteins with these two types of curdlan gels as a function of addition levels. PRACTICAL APPLICATION: Curdlan can form two different types of gels mainly depending on heating temperature, designated as thermo-reversible curdlan gels (TRC) and thermo-irreversible curdlan gels (TIRC), respectively. The addition of these two gels could improve the textural and gel properties of frankfurters, as well as improve the rheological profiles of meat batters. Each gel type invokes a different mechanism of influence on the formation of the complex meat protein network. Results indicate that TRC (mainly as an effective gelling agent) and TIRC (mainly as a potential fat-mimetic) can provide distinctive frankfurter formulations catered to the requirements preferred by different consumers.


Subject(s)
Gels/chemistry , Meat Products/analysis , beta-Glucans/chemistry , Cooking , Emulsions , Rheology
7.
J Dairy Sci ; 99(8): 6052-6060, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27265171

ABSTRACT

The heat-induced fibrils of whey protein concentrate (WPC) have demonstrated an acid-responsive property; that is, the fibrils went through formation-depolymerization-reformation as pH was adjusted to 1.8, 6.5, and back to 1.8. We investigated the microstructure, driving force, and thermal stability of 3.0% (wt) WPC nanofibrils adjusted between pH 6.5 and 1.8 twice. The results showed that the nanofibrils had acid-responsive properties and good thermal stability after reheating for 10h at 90°C and adjusting pH from 1.8 to 6.5 to 1.8. The content of WPC fibril aggregates was not much different with the prolongation of heating times during pH variation. Although the nanofibrils' structure could be destroyed only by changing the pH, the essence of this destruction might only form fiber fragments, polymers that would restore a fibrous structure upon returning to pH 1.8. A described model for the acid-responsive assembly of fibrils of WPC was proposed. The fibrils went through formation-depolymerization-reformation by weaker noncovalent interactions (surface hydrophobicity) as pH changed from 1.8 to 6.5 back to 1.8. However, the fibrils lost the acid-responsive properties because much more S-S (disulfide) formation occurred when the solution was adjusted to pH 6.5 and reheated. Meanwhile, fibrils still possessed acid-responsive properties when reheated at pH 1.8, and the content of fibrils slightly increased with a further reduction of α-helix structure.


Subject(s)
Acids/chemistry , Hot Temperature , Whey Proteins/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Milk Proteins/chemistry , Models, Chemical , Solutions
8.
Ann N Y Acad Sci ; 1350: 1-16, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26375862

ABSTRACT

Chemoresistance enables cancer cells to evade apoptotic stimuli and leads to poor clinical prognosis. It arises from dysregulation of signaling factors responsible for inducing cell proliferation and death and for modulating the microenvironment. In gynecologic cancers, p53 is a pivotal determinant of cisplatin sensitivity, while BCL-2 family members are associated with taxane sensitivity. Mitochondria fusion and fission dynamics are required for many mitochondrial functions and are also involved in mitochondria-mediated apoptosis, which is closely associated with chemosensitivity. Mitochondrial dynamics are controlled by a number of intracellular proteins, including fusion (Opa1 and mitofusion 1 and 2) and fission proteins (Drp1 and Fis1), which can be proapoptotic or antiapoptotic, depending on the cell types, status, and stimuli from the microenvironment. This paper describes the role of mitochondrial dynamics in the mechanism of chemoresistance and the evidence supporting a significant contribution of a hyperfusion state to chemoresistance in gynecological cancers. Moreover, we discuss our findings showing that enforced fission induces apoptosis of cancer cells and sensitizes them to chemotherapeutic agents. Understanding the regulation of mitochondrial dynamics in chemoresistance may provide insight into new biomarkers that better predict cancer chemosensitivity and may aid the development of effective therapeutic strategies for clinical management of gynecologic cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Genital Neoplasms, Female/drug therapy , Genitalia, Female/drug effects , Mitochondrial Dynamics/drug effects , Models, Biological , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Drug Resistance, Multiple , Female , Genital Neoplasms, Female/metabolism , Genital Neoplasms, Female/pathology , Genitalia, Female/metabolism , Genitalia, Female/pathology , Humans
9.
J Food Sci Technol ; 51(8): 1525-32, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25114343

ABSTRACT

Horseradish peroxidase (HRP, EC 1.11.1.7) was applied to treat whole bovine milk in the presence or absence of ferulic acid (FA). The treated milk exhibited different rheological properties from the control milk, and was used to prepare set-yoghurt with commercial direct vat set starter. Some chemical, textural and rheological properties of the yoghurt prepared were measured and compared. Compared to that prepared with the control milk, the yoghurt prepared with the HRP- or HRP and FA-treated bovine milk exhibited an increased hardness and adhesiveness, lower syneresis extent, higher apparent viscosity, and higher storage modulus and viscous modulus. Observation of the microstructure of the yoghurt samples under scanning electron microscopy illustrated that HRP treatment of bovine milk led to the prepared yoghurt a more compact and uniform structure. The results in the present work stated that treatment of bovine milk with HRP in the presence of ferulic acid could be applied to improve the quality of set-yoghurt.

10.
J Biol Chem ; 289(39): 27134-27145, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25112877

ABSTRACT

Mitochondria are highly dynamic organelles, and mitochondrial fission is a crucial step of apoptosis. Although Oma1 is believed to be responsible for long form Opa1 (L-Opa1) processing during mitochondrial fragmentation, whether and how Oma1 is involved in L-Opa1 processing and participates in the regulation of chemoresistance is unknown. Chemosensitive and chemoresistant ovarian (OVCA) and cervical (CECA) cancer cells were treated with cisplatin (CDDP). Mitochondrial dynamics and protein contents were assessed by immunofluorescence and Western blot, respectively. The requirements of Oma1 and p53 for CDDP-induced L-Opa1 processing, mitochondrial fragmentation, and apoptosis were examined by siRNA or cDNA. CDDP induces L-Opa1 processing and mitochondrial fragmentation in chemosensitive but not in chemoresistant cells. CDDP induced Oma1 40-kDa form increases in OV2008 cells, not in C13* cells. Oma1 knockdown inhibited L-Opa1 processing, mitochondrial fragmentation, and apoptosis. Silencing p53 expression attenuated the effects of CDDP in Oma1 (40 kDa) increase, L-Opa1 processing, mitochondrial fragmentation, and apoptosis in chemosensitive OVCA cells, whereas reconstitution of p53 in p53 mutant or null chemoresistant OVCA cells induced Oma1 (40 kDa) increase, L-Opa1 processing, mitochondrial fragmentation, and apoptosis irrespective of the presence of CDDP. Prohibitin 1 (Phb1) dissociates from Opa1-Phb1 complex and binds phosphorylated p53 (serine 15) in response to CDDP in chemosensitive but not chemoresistant CECA cells. These findings demonstrate that (a) p53 and Oma1 mediate L-Opa1 processing, (b) mitochondrial fragmentation is involved in CDDP-induced apoptosis in OVCA and CECA cells, and (c) dysregulated mitochondrial dynamics may in part be involved in the pathophysiology of CDDP resistance.


Subject(s)
GTP Phosphohydrolases/metabolism , Metalloendopeptidases/metabolism , Ovarian Neoplasms/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Protein p53/metabolism , Uterine Cervical Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , GTP Phosphohydrolases/genetics , Humans , Metalloendopeptidases/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/genetics , Ovarian Neoplasms/diet therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prohibitins , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
11.
J Food Sci Technol ; 51(2): 276-84, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24493884

ABSTRACT

Casein hydrolysate was prepared by hydrolyzing casein with Neutrase and then modified by a Neutrase-catalyzed plastein reaction. The prepared hydrolysate had a degree of hydrolysis of 13.0% and exhibited ACE inhibition in vitro with an IC50 value of 40.4 µg⋅mL(-1). With the decreased amount of free amino groups of the modified hydrolysate as the response, some conditions of the plastein reaction including substrate concentration, enzyme to substrate ratio, reaction temperature and time were studied by single factor experiments and response surface methodology, and optimized finally as 62% (w/w), 3.0 kU⋅g(-1) peptides, 30 °C and 6.3 h, respectively. The maximum decreased amount of free amino groups of the modified hydrolysate prepared under these optimized conditions was 210.0 µmol⋅g(-1) peptides, while corresponding IC50 value was lowered to 14.7 µg⋅mL(-1). The present result indicates that Neutrase-catalyzed plastein reaction was capable of enhancing ACE-inhibitory activity in vitro of casein hydrolysate, and also highlights the importance of a forthcoming study to investigate the peptide compositions of the modified hydrolysate and the role of protease used in the plastein reaction.

12.
Langmuir ; 28(40): 14137-42, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22839648

ABSTRACT

Alpha calcium sulfate hemihydrate (α-HH) is an important class of cementitious material and exhibits considerable morphology-dependent properties. In the reverse microemulsions of water/n-hexanol/cetyltrimethylammonium bromide (CTAB)/sodium dodecyl sulfonate (SDS), the morphology and aspect ratio of α-HH are successfully controlled by adjusting the mass ratio of CTAB/H(2)O and the concentration of SDS. As the ratio of CTAB/H(2)O is increased from 1.3 to 4.5, the crystal length decreases from 120 to 150 µm to 0.5-1.2 µm with the corresponding aspect ratio reduced sharply from 180 to 250 to 2-7. With increasing SDS concentration, the crystal morphology gradually changes from submicrometer-sized long column to rod, hexagonal plate, and even nanogranule. The preferential adsorption of CTAB on the side facets and SDS on the top facets contributes to the morphology control. This work presents a simple, versatile, highly efficient approach to controlling the morphology of α-HH on a large scale and will offer more opportunities for α-HH multiple applications.


Subject(s)
Calcium Sulfate/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Emulsions , Hexanols/chemistry , Models, Molecular , Molecular Conformation , Sodium Dodecyl Sulfate/chemistry , Water/chemistry
13.
J Obstet Gynaecol Res ; 35(3): 574-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19527404

ABSTRACT

Nongestational ovarian choriocarcinoma (NGCO) is a rare form of malignancy, which is difficult to diagnose. We present a case of a 10-year-old girl diagnosed with pure nongestational ovarian choriocarcinoma. This patient responded well to conservative surgery and cisplatin-based regimen chemotherapy. Approximately 38 authenticated cases of NGCO have been reported in the English published work to date in the world. We report here the clinical features, differential diagnosis, appropriate management and outcome of our case, together with analysis of the reported cases in the published work.


Subject(s)
Choriocarcinoma/diagnosis , Ovarian Neoplasms/diagnosis , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Bleomycin/administration & dosage , CA-125 Antigen/blood , Child , Choriocarcinoma/drug therapy , Choriocarcinoma/surgery , Cisplatin/administration & dosage , Diagnosis, Differential , Fallopian Tubes/surgery , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/surgery , Ovariectomy , Tomography, X-Ray Computed , Vinblastine/administration & dosage
15.
Fa Yi Xue Za Zhi ; 19(1): 54-6, 2003.
Article in Chinese | MEDLINE | ID: mdl-12725166

ABSTRACT

The evidence and the feature of apoptosis following tyrauma brain injury(TBI) and the possible mechanisms underlying apoptosis were reviewed. Recently research showed that apoptosis play an important role in TBI, the occurring time and area of apoptosis were found significant differences compared with that of necrosis. The neural cell apoptosis can undergo following many pathways after TBI. In our review, the foreground of apoptosis after TBI research in forensic pathology were also discussed.


Subject(s)
Apoptosis/physiology , Brain Injuries/pathology , Animals , Forensic Medicine , Gene Expression Regulation , Humans , Neurons/pathology
16.
Journal of Forensic Medicine ; (6): 54-56, 2003.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-982967

ABSTRACT

The evidence and the feature of apoptosis following tyrauma brain injury(TBI) and the possible mechanisms underlying apoptosis were reviewed. Recently research showed that apoptosis play an important role in TBI, the occurring time and area of apoptosis were found significant differences compared with that of necrosis. The neural cell apoptosis can undergo following many pathways after TBI. In our review, the foreground of apoptosis after TBI research in forensic pathology were also discussed.


Subject(s)
Animals , Humans , Apoptosis/physiology , Brain Injuries/pathology , Forensic Medicine , Gene Expression Regulation , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...