Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Bull (Beijing) ; 68(23): 2954-2961, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37919156

ABSTRACT

In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40-220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10-3 cm2 V-1 s-1; hole mobility: 7.0 × 10-3 cm2 V-1 s-1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40-220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.

2.
Angew Chem Int Ed Engl ; 61(35): e202207204, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35729063

ABSTRACT

To date, all efficient host materials reported for phosphorescent OLEDs (PhOLEDs) are constructed with heteroatoms, which have a crucial role in the device performance. However, it has been shown in recent years that the heteroatoms not only increase the design complexity but can also be involved in the instability of the PhOLED, which is nowadays the most important obstacle to overcome. Herein, we design pure aromatic hydrocarbon materials (PHC) as very efficient hosts in high-performance white and blue PhOLEDs. With EQE of 27.7 %, the PHC-based white PhOLEDs display similar efficiency as the best reported with heteroatom-based hosts. Incorporated as a host in a blue PhOLED, which are still the weakest links of the technology, a very high EQE of 25.6 % is reached, surpassing, for the first time, the barrier of 25 % for a PHC and FIrpic blue emitter. This performance shows that the PHC strategy represents an effective alternative for the future development of the OLED industry.

3.
Bioengineered ; 13(3): 6638-6649, 2022 03.
Article in English | MEDLINE | ID: mdl-35235761

ABSTRACT

Drug-resistant epilepsy (DRE) is a chronic condition derived from spontaneous changes and regulatory effects in the epileptic brain. As demethylation factors, ten-eleven translocation (TET) family members have become a focus in recent studies of neurological disorders. Here, we quantified and localized TET1, TET2 and 5-hydroxymethylcytosine (5-hmC) in the temporal lobe cortex of DRE patients (n = 27) and traumatic brain hemorrhage controls (n = 10) by immunochemical staining. TET2 and ATP binding cassette subfamily B member 1 (ABCB1) expression patterns were determined in the isolated brain capillaries of DRE patients. TET2 expression was significantly increased in the temporal cortical tissue of DRE patients with or without hippocampal sclerosis (HS) compared to control patients, while TET1 and 5-hmC showed no differences in expression. We also found that a particularly strong expression of TET2 in the vascular tissue of DRE patients. ABCB1 and TET2 have evidently higher expression in the vascular endothelium from the neocortex of DRE patients. In blood-brain barrier (BBB) model, TET2 depletion can cause attenuated expression and function of ABCB1. Data from a cohort study and experiments in a BBB model suggest that TET2 has a specific regulatory effect on ABCB1, which may serve as a potential mechanism and target in DRE.


Subject(s)
Blood-Brain Barrier , Dioxygenases , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adenosine Triphosphate/metabolism , Brain/metabolism , Cohort Studies , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Epigenesis, Genetic , Family , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
4.
Angew Chem Int Ed Engl ; 61(22): e202201886, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35293091

ABSTRACT

A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.

5.
Chem Commun (Camb) ; 57(84): 11041-11044, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34608910

ABSTRACT

A narrowband blue CP-TADF emitter with a rigid hetero-helicene structure (QAO-PhCz) was synthesized and characterized. QAO-PhCz exhibits good electroluminescence performance (EQE = 14.0%) and narrow FWHM. The enantiomers of QAO-PhCz display CPL and CPEL properties with |glum| and |gEL|values of up to 1.1 × 10-3 and 1.5 × 10-3, respectively.

6.
Gene ; 771: 145359, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33333223

ABSTRACT

PURPOSE: Drug-resistant epilepsy is a problem worldwide. Xenobiotic receptors may play a significant role in the establishment of resistance to antiepileptic agents. Previous studies have confirmed that the metabolism and efficacy of carbamazepine (CBZ) can be influenced by xenobiotic receptors, especially pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AHR). Therefore, this study intends to elucidate the pharmacogenomic associations of polymorphisms of these xenobiotic receptors with the CBZ response in epilepsy patients, and these genetic data may be useful for the treatment of clinical prophylaxis and individualized treatment of intractable epilepsy. METHODS: Adult patients with epilepsy who were on CBZ-based monotherapy and combination therapy (n = 257) were genotyped, and the patients were divided into drug-responsive and drug-resistant groups according to the International League Against Epilepsy criteria. We sought to tag single-nucleotide polymorphisms (SNPs) of PXR, CAR and AHR that principally represent alleles associated with drug resistance risk; in addition, a gene interaction analysis reference panel was constructed for SNP-based imputation. RESULTS: No significant effects of PXR or AHR polymorphisms were observed. However, an interaction between the CAR rs2502815 variant and CBZ response was observed: in CBZ-based monotherapy and combination therapy patients, the GG genotype of the CAR rs2502815 variant (vs. wild-type homozygous) was independently associated with CBZ response after adjusting for variables [odds ratio (OR) = 0.389, 95% confidence interval (CI) 0.203-0.743, p = 0.004]. The results of the haplotype and gene interaction case-control analyses of the CBZ response were negative. Our results provide clinical data regarding the genetic possibilities of drug responses related to CAR variation in epilepsy patients. CONCLUSION: This study is the first to indicate a potentially relevant interaction between the CAR rs2502815 polymorphism and the CBZ response in epilepsy patients.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carbamazepine/administration & dosage , Drug Resistance , Epilepsy/drug therapy , Pregnane X Receptor/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Adolescent , Adult , Carbamazepine/pharmacology , Case-Control Studies , Child , Constitutive Androstane Receptor , Epilepsy/genetics , Female , Genetic Association Studies , Haplotypes , Humans , Male , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Precision Medicine , Treatment Outcome , Young Adult
7.
Chem Sci ; 11(19): 4887-4894, 2020 May 05.
Article in English | MEDLINE | ID: mdl-34122944

ABSTRACT

In the field of phosphorescent organic light-emitting diodes (PhOLEDs), designing high-efficiency universal host materials for red, green and blue (RGB) phosphors has been quite a challenge. To date, most of the high-efficiency universal hosts reported incorporate heteroatoms, which have a crucial role in the device performance. However, the introduction of different kinds of heterocycles increases the design complexity and cost of the target material and also creates potential instability in the device performance. In this work, we show that pure aromatic hydrocarbon hosts designed with the 9,9'-spirobifluorene scaffold are high-efficiency and versatile hosts for PhOLEDs. With external quantum efficiencies of 27.3%, 26.0% and 27.1% for RGB PhOLEDs respectively, this work not only reports the first examples of high-efficiency pure hydrocarbon materials used as hosts in RGB PhOLEDs but also the highest performance reported to date for a universal host (including heteroatom-based hosts). This work shows that the PHC design strategy is promising for the future development of the OLED industry as a high-performance and low-cost option.

8.
Curr Neuropharmacol ; 18(2): 153-166, 2020.
Article in English | MEDLINE | ID: mdl-31660836

ABSTRACT

An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.


Subject(s)
Anticonvulsants/pharmacology , Epigenesis, Genetic/drug effects , Anticonvulsants/therapeutic use , Cardiovascular Diseases , DNA Methylation , Epigenomics , Histones/genetics , Humans , Kidney Diseases , Neoplasms , Nervous System Diseases , Protein Processing, Post-Translational , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...