Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(18): 7138-7144, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38676633

ABSTRACT

Superoxide anion (O2·-) and peroxynitrite (ONOO-), two important oxidants under oxidative stress, coexist in complex cell and organism systems, playing crucial roles in various physiological and pathological processes, particularly in neurodegenerative diseases. Despite the absence of robust molecular tools capable of simultaneously visualizing O2·- and ONOO- in biosystems, the relationship between these two species remains understudied. Herein, we present sequentially activated fluorescent probe, DHX-SP, which exhibits exceptional selectivity and sensitivity toward O2·- and ONOO-. This probe enables precise imaging of these species in living PC12 cells under oxidative stress conditions using distinct fluorescence signal combinations. Furthermore, the probe DHX-SP has the ability to visualize changes in O2·- and ONOO- levels during ferroptosis of PC12 cells and in the Parkinson's disease model. These findings establish a connection between the crosstalk of the phosphorus group of O2·- and ONOO- in PC12 cells under oxidative stress.


Subject(s)
Fluorescent Dyes , Oxidative Stress , Peroxynitrous Acid , Superoxides , PC12 Cells , Peroxynitrous Acid/analysis , Peroxynitrous Acid/metabolism , Animals , Rats , Oxidative Stress/drug effects , Fluorescent Dyes/chemistry , Superoxides/metabolism , Superoxides/analysis , Optical Imaging
2.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38443734

ABSTRACT

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

3.
Environ Pollut ; 337: 122614, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37748639

ABSTRACT

The presence of trace metals (TMs) in agricultural soil has garnered considerable attention due to their potential migration into crops, posing a significant risk to human health. In this study, we examined the concentrations of eight trace metals (Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the soil and investigated various soil physicochemical characteristics in the Three Rivers Plain region, China. The assessment of the geoaccumulation index (Igeo) for the mean concentration of all trace metals indicated that the soils were generally free from significant TM pollution. However, a noteworthy finding emerged in relation to Hg, where the maximum Igeo value suggested moderate pollution levels. Kriging prediction results further indicated that approximately 1.55% of the study area might be impacted by Hg pollution. Moreover, it is prudent to direct attention towards Cd, Cr, Cu, Mn, and Ni, as their Igeo values revealed that the region with the highest concentrations of these metals ranged from unpolluted to moderately polluted. This study employed a comprehensive approach, utilizing the Self-Organizing Map (SOM), Kriging spatial distribution, and the Positive Matrix Factorization (PMF) model to identify the sources of TMs in agricultural soil. The results unveiled that the primary contributors to TM presence were the natural parental materials, alongside industrial activities such as coal mining and coal plant operations, as well as agricultural practices. These findings provide foundational insights for future management strategies in the Three Rivers Plain, aiming to enhance agricultural productivity and promote sustainability.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Trace Elements , Humans , Soil , Farms , Metals, Heavy/analysis , Cadmium , Environmental Monitoring/methods , Soil Pollutants/analysis , Risk Assessment , China
4.
Toxicology ; 495: 153610, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37541565

ABSTRACT

Aluminum (Al) is recognized as a neurotoxin. Studies have confirmed that the neurotoxicity induced by Al may be related to tau hyperphosphorylation. Phosphorylated tau is degraded through the ubiquitin-proteasome pathway (UPP), in which the carboxyl terminus of Hsc70-interacting protein (CHIP) plays an important role. However, whether the CHIP plays a role in regulating tau hyperphosphorylation induced by Al is yet to be determined. The purpose of this study was to explore the molecular mechanism of the CHIP in tau hyperphosphorylation induced by AlCl3 in N2a cells. Mouse neuroblastoma cells (N2a) were exposed to different concentrations of AlCl3 (0, 0.5, 1, and 2 mM) and treated with CHIP/CHIP shRNA/CHIP (ΔU-box)/CHIP (ΔTPR) plasmid transfection. The cell viability was determined by the CCK-8 kit. Protein expression was detected by Western blot. The interaction between CHIP and AlCl3 exposure on the proteins was analyzed by factorial design ANOVA. The results showed that Al can cause tau hyperphosphorylation, mainly affecting the pThr231, pSer262, and pSer396 sites of tau in N2a cells. UPP is involved in the degradation of tau hyperphosphorylation induced by Al in N2a cells, of which CHIP may be the main regulatory target. Both the U-box and TPR domains of CHIP are indispensable and play an important role in the regulation of tau hyperphosphorylation induced by AlCl3 in N2a cells.


Subject(s)
HSC70 Heat-Shock Proteins , Ubiquitin-Protein Ligases , Mice , Animals , HSC70 Heat-Shock Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Proteins/metabolism , Carrier Proteins/metabolism , Transfection , tau Proteins/genetics , tau Proteins/toxicity , tau Proteins/metabolism , Phosphorylation
6.
Anal Chem ; 95(19): 7611-7619, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37134014

ABSTRACT

Mitochondrial viscosity affects metabolite diffusion and mitochondrial metabolism and is associated with many diseases. However, the accuracy of mitochondria-targeting fluorescent probes in measuring viscosity is unsatisfactory because these probes can diffuse from mitochondria during mitophagy with a decreased mitochondrial membrane potential (MMP). To avoid this problem, by incorporating different alkyl side chains into dihydroxanthene fluorophores (denoted as DHX), we developed six near-infrared (NIR) probes for the accurate detection of mitochondrial viscosity, and the sensitivity to viscosity and the mitochondrial targeting and anchoring capability of these probes increased by increasing the alkyl chain length. Among them, DHX-V-C12 had a highly selective response to viscosity variations with minimum interference from polarity, pH, and other biologically relevant species. Furthermore, DHX-V-C12 was used to monitor the mitochondrial viscosity changes of HeLa cells treated by ionophores (nystatin, monensin) or under starvation conditions. We hope that this mitochondrial targeting and anchoring strategy based on increasing the alkyl chain length will be a general strategy for the accurate detection of mitochondrial analytes, enabling the accurate study of mitochondrial functions.


Subject(s)
Fluorescent Dyes , Mitochondria , Humans , Fluorescent Dyes/chemistry , Viscosity , HeLa Cells , Mitochondria/metabolism , Mitophagy
7.
Small ; 19(22): e2300758, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36866497

ABSTRACT

Fe single atoms and N co-doped carbon nanomaterials (Fe-N-C) are the most promising oxygen reduction reaction (ORR) catalysts to replace platinum group metals. However, high-activity Fe single-atom catalysts suffer from poor stability owing to the low graphitization degree. Here, an effective phase-transition strategy is reported to enhance the stability of Fe-N-C catalysts by inducing increased degree of graphitization and incorporation of Fe nanoparticles encapsulated by graphitic carbon layer without sacrificing activity. Remarkably, the resulted Fe@Fe-N-C catalysts achieved excellent ORR activity (E1/2  = 0.829 V) and stability (19 mV loss after 30K cycles) in acid media. Density functional theory (DFT) calculations agree with experimental phenomena that additional Fe nanoparticles not only favor to the activation of O2 by tailoring d-band center position but also inhibit the demetallization of Fe active center from FeN4 sites. This work provides a new insight into the rational design of highly efficient and durable Fe-N-C catalysts for ORR.

8.
Natl Sci Rev ; 10(3): nwac272, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36875785

ABSTRACT

Simultaneously achieving high electrochemical activity and high loading for solid-state batteries has been hindered by slow ion transport within solid electrodes, in particular with an increase in electrode thickness. Ion transport governed by 'point-to-point' diffusion inside a solid-state electrode is challenging, but still remains elusive. Herein, synchronized electrochemical analysis using X-ray tomography and ptychography reveals new insights into the nature of slow ion transport in solid-state electrodes. Thickness-dependent delithiation kinetics are spatially probed to identify that low-delithiation kinetics originate from the high tortuous and slow longitudinal transport pathways. By fabricating a tortuosity-gradient electrode to create an effective ion-percolation network, the tortuosity-gradient electrode architecture promotes fast charge transport, migrates the heterogeneous solid-state reaction, enhances electrochemical activity and extends cycle life in thick solid-state electrodes. These findings establish effective transport pathways as key design principles for realizing the promise of solid-state high-loading cathodes.

9.
Small ; 19(22): e2207461, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36861365

ABSTRACT

The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.

10.
Anal Chem ; 95(6): 3544-3549, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36744597

ABSTRACT

Aberrant mitochondrial viscosity is closely associated with many diseases and cellular malfunctions. Thus, the development of reliable methods for monitoring mitochondrial viscosity variations has attracted considerable attention. Herein, through stepwise structural modulation of the dihydroxanthene fluorophore (DHX), we developed three NIR fluorescent probes, named DHX-V-1-3, for detecting mitochondrial viscosity. Among them, DHX-V-3 displayed the highest signal-to-noise ratio (67-fold) for viscosity with outstanding selectivity and showed excellent mitochondria targeting and immobilization ability. At the cellular level, the DHX-V-3 probe was successfully applied to image the mitochondrial viscosity in live cells upon treatment with lipopolysaccharide (LPS) or nystatin. Moreover, benefiting from its NIR emission and the increased depth of tissue imaging, DHX-V-3 demonstrated the ability to visualize the increased viscosity in LPS-treated mice.


Subject(s)
Fluorescent Dyes , Lipopolysaccharides , Humans , Animals , Mice , Fluorescent Dyes/chemistry , Viscosity , Lipopolysaccharides/pharmacology , Lipopolysaccharides/analysis , Mitochondria/chemistry , Microscopy, Fluorescence/methods , HeLa Cells
11.
ChemSusChem ; 16(7): e202202060, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36633554

ABSTRACT

Gel polymer electrolytes (GPE) are promising next-generation electrolytes for high-energy batteries, combining the multiple advantages of liquid and all-solid-state electrolytes. Herein, we a synthesized GPE using poly(ethylene glycol)acrylate (PEGDA) in order to understand how the GPE efficiently inhibits lithium dendrite formation and growth. The effects of PEGDA on the solvation shell structure of the lithium ion are investigated using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations, which are also supported by Raman spectroscopy. The GPE electrolytes with optimal PEGDA concentration exhibit high transference numbers (t Li + ${{_{{\rm Li}{^{+}}}}}$ =0.72) and ionic conductivity (σ=3.24 mS cm-1 ). A symmetric lithium ion battery using GPE can be stably cycled for 1200 h in comparison to 320 h in a liquid electrolyte (LE), possibly owing to the high content of LiF (17.9 %) in the solid-electrolyte interphase film of the GPE cell. The observed concentration/electric field gradient observed through the finite element method also accounts for the good cycling performance. In addition, a LiCoO2 |GPE|Li cell demonstrates excellent capacity retention of 87.09 % for 200 cycles; this approach could present promising guidelines for the design of high-energy lithium batteries.

12.
Sci Adv ; 8(35): eabq6261, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36054349

ABSTRACT

Solid-state Li-O2 batteries (SSLOBs) have attracted considerable attention because of their high energy density and superior safety. However, their sluggish kinetics have severely impeded their practical application. Despite efforts to design highly efficient catalysts, efficient oxygen reaction evolution at gas-solid interfaces and fast transport pathways in solid-state electrodes remain challenging. Here, we develop a dual electronic-ionic microenvironment to substantially enhance oxygen electrolysis in solid-state batteries. By designing a lithium-decorative catalyst with an engineering crystal structure, the coordinatively unsaturated sites and high concentration of defects alleviate the limitations of electronic-ionic transport in solid interfaces and create a balanced gas-solid microenvironment for solid-state oxygen electrolysis. This strategy facilitates oxygen reduction reaction, mediates the transport of reaction species, and promotes the decomposition of the discharge products, contributing to a high specific capacity with a stable cycling life. Our work provides previously unknown insight into structure-property relationships in solid-state electrolysis for SSLOBs.

13.
Angew Chem Int Ed Engl ; 61(42): e202207524, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36038511

ABSTRACT

Single atom tailored metal nanoparticles represent a new type of catalysts. Herein, we demonstrate a single atom-cavity coupling strategy to regulate performance of single atom tailored nano-catalysts. Selective atomic layer deposition (ALD) was conducted to deposit Ru single atoms on the surface concavities of PtNi nanoparticles (Ru-ca-PtNi). Ru-ca-PtNi exhibits a record-high activity for methanol oxidation reaction (MOR) with 2.01 A mg-1 Pt . Also, Ru-ca-PtNi showcases a significant durability with only 16 % activity loss. Operando electrochemical Fourier transform infrared spectroscopy (FTIR) and theoretical calculations demonstrate Ru single atoms coupled to cavities accelerate the CO removal by regulating d-band center position. Further, the high diffusion barrier of Ru single atoms in concavities accounts for excellent stability. The developed Ru-ca-PtNi via single atom-cavity coupling opens an encouraging pathway to design highly efficient single atom-based (electro)catalysts.

14.
Chem Commun (Camb) ; 58(40): 5976-5979, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35481600

ABSTRACT

We developed a dual-responsive fluorescent probe MC-V-P for the simultaneous detection of ONOO- and viscosity by different imaging channels. MC-V-P has high sensitivity and selectivity, and shows good stability at different pH levels. Notably, the probe has two independent fluorescence signals toward ONOO- and viscosity changes at 580 nm and 740 nm, respectively. Cell imaging experiment results demonstrated that MC-V-P exhibits low cytotoxicity and could be used to monitor viscosity and ONOO- in living HepG2 cells simultaneously.


Subject(s)
Fluorescent Dyes , Peroxynitrous Acid , Fluorescence , Fluorescent Dyes/toxicity , Viscosity
15.
Small ; 18(22): e2200367, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35384281

ABSTRACT

Mitigating the mechanical degradation and enhancing the ionic/electronic conductivity are critical but challengeable issues toward improving electrochemical performance of conversion-type anodes in rechargeable batteries. Herein, these challenges are addressed by constructing interconnected 3D hierarchically porous structure synergistic with Nb single atom modulation within a Co3 O4 nanocage (3DH-Co3 O4 @Nb). Such a hierarchical-structure nanocage affords several fantastic merits such as rapid ion migration and enough inner space for alleviating volume variation induced by intragrain stress and optimized stability of the solid-electrolyte interface. Particularly, experimental studies in combination with theoretical analysis verify that the introduction of Nb into the Co3 O4 lattice not only improves the electron conductivity, but also accelerates the surface/near-surface reactions defined as pesudocapacitance behavior. Dynamic behavior reveals that the ensemble design shows huge potential for fast and large lithium storage. These features endow 3DH-Co3 O4 @Nb with remarkable battery performance, delivering ≈740 mA h g-1 after ultra-long cycling of 1000 times under a high current density of 5 A g-1 . Importantly, the assembled 3DH-Co3 O4 @Nb//LiCoO2 pouch cell also presents a long-lived cycle performance with only ≈0.059% capacity decay per cycle, inspiring the design of electrode materials from both the nanostructure and atomic level toward practical applications.

16.
Anal Chem ; 94(11): 4881-4888, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35274928

ABSTRACT

Lipid droplets (LDs) are involved in various physiological processes and associated with cancer development, and are regarded as a potential tumor marker for cancer diagnosis. Monitoring LDs is of prior importance to understand their involvement in biological mechanisms and the early detection of cancers. Highly sensitive and specific noninvasive fluorescent probes are particularly desirable for imaging LDs and cancer diagnosis. Herein, according to the high-viscosity and low-polarity microenvironment in LDs, we developed four easily prepared LDs-specific probes based on noncharged merocyanines. Among them, LD-1 absorbs and emits in the near-infrared (NIR) region with a large Stokes shift. Importantly, LD-1 displayed high sensitivity to high viscosity and low polarity, which allowed it to show high LDs-targeting ability. In cell imaging, LD-1 successfully probed the changes in LDs in the presence of oleic acid or during ferroptosis and was used to distinguish cancer cells from normal cells.


Subject(s)
Ferroptosis , Lipid Droplets , Fluorescent Dyes , HeLa Cells , Humans , Microscopy, Fluorescence
17.
Chem Commun (Camb) ; 57(75): 9554-9557, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34546236

ABSTRACT

Herein, seven viscosity-sensitive probes were developed via simple structural modification of dicyanoisophorone (DCO)-derived dyes. Among them, DCO-5 significantly enhances (180-fold) the response signal in highly viscous aqueous media while showing insensitivity to polarity changes or pH variations, and enables the successful detection of viscosity changes in nystatin-treated HepG2 cells, PC 12 cells and zebrafish.


Subject(s)
Fluorescent Dyes/chemistry , Isocyanates/chemistry , Animals , Drug Evaluation, Preclinical , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Molecular Structure , PC12 Cells , Rats , Viscosity , Zebrafish
18.
Chem Commun (Camb) ; 57(54): 6604-6607, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34114576

ABSTRACT

A novel "double-locked" probe, DCO-H2S-V, was prepared for detecting hydrogen sulfide in a highly viscous system. Experiments demonstrated that only when H2S and a high viscosity environment coexist in a cell, can the probe be activated effectively and emit fluorescence. This has been successfully used for detecting the changes in viscosity and H2S in a Parkinson's disease model, PC-12 cells treated with glutamate.


Subject(s)
Hydrogen Sulfide/analysis , Animals , Glutamic Acid/pharmacology , PC12 Cells , Rats , Spectrometry, Fluorescence , Viscosity
19.
Chem Commun (Camb) ; 57(54): 6693, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34165133

ABSTRACT

Correction for 'A "double-locked" probe for the detection of hydrogen sulfide in a viscous system' by Fanpeng Kong et al., Chem. Commun., 2021, DOI: 10.1039/d1cc01819a.

20.
Small ; 17(11): e2007245, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33605070

ABSTRACT

Single-atom catalysts (SACs) have attracted significant attention due to their superior catalytic activity and selectivity. However, the nature of active sites of SACs under realistic reaction conditions is ambiguous. In this work, high loading Pt single atoms on graphitic carbon nitride (g-C3 N4 )-derived N-doped carbon nanosheets (Pt1 /NCNS) is achieved through atomic layer deposition. Operando X-ray absorption spectroscopy (XAS) is performed on Pt single atoms and nanoparticles (NPs) in both the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The operando results indicate that the total unoccupied density of states of Pt 5d orbitals of Pt1 atoms is higher than that of Pt NPs under HER condition, and that a stable Pt oxide is formed during ORR on Pt1 /NCNS, which may suppress the adsorption and activation of O2 . This work unveils the nature of Pt single atoms under realistic HER and ORR conditions, providing a deeper understanding for designing advanced SACs.

SELECTION OF CITATIONS
SEARCH DETAIL
...