Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 171902, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521262

ABSTRACT

Dimethyl phthalate (DMP), the lowest-molecular-weight phthalate ester (PAE), is one of the most commonly detected persistent organic pollutants in the environment, but its toxic effects, especially cardiovascular developmental toxicity, are largely unknown. In this study, zebrafish embryos were exposed to sublethal concentrations of DMP from 4 to 96 hpf. Our results showed that DMP treatment induced yolk retention, pericardial edema, and swim bladder deficiency, as well as increased SV-BA distance and decreased heart rate, stroke volume, ventricular axis shortening rate and ejection fraction. In addition, oxidative stress and apoptosis were found to be highly involved in this process. The results of transcriptome sequencing and mRNA expression of related genes indicated that MAPK and calcium signaling pathways were perturbed by DMP. These findings have the potential to provide new insights into the potential developmental toxicity and cardiovascular disease risk of DMP.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Calcium Signaling , Embryo, Nonmammalian , Zebrafish Proteins/metabolism , Water Pollutants, Chemical/metabolism
2.
Front Pharmacol ; 13: 901460, 2022.
Article in English | MEDLINE | ID: mdl-35721161

ABSTRACT

AIM OF THE STUDY: Ischemic diseases have a huge impact on people's health, which can cause blood supply blockage or restriction in specific tissues. Researchers must develop novel drugs with great efficacy and low toxicity for the prevention and treatment of such diseases. Isopropyl caffeic acid (KYZ) was one of the metabolites of caffeic acid in vivo. This study is to explore the protective effect and mechanism of KYZ on ischemic disease from the perspective of angiogenesis in vivo and in vitro, providing support for the treatment of ischemic diseases and the discovery of a new candidate drug. METHODS: The network pharmacology and molecular docking were used to predict the targets of KYZ. In addition, the effects of KYZ on damaged and normal blood vessels were evaluated using the Tg (fli1: EGFP) transgenic zebrafish. The HUVECs model was used to study the effects of KYZ on proliferation, migration, and tube formation. The same dosage of caffeic acid (CA) was also administered in vitro and in vivo at the same time to assess the pharmacodynamic difference between the two compounds. Western Blot and ELISA methods were used to detect the expression of related target proteins. RESULTS: The result from the network pharmacology indicated that the targets of KYZ were related to angiogenesis. It was also found that KYZ could repair the vascular damage induced by the PTK787 and promote the growth of subintestinal vessels in normal zebrafish. The result also indicated that KYZ's angiogenic ability is better than the precursor compound CA. In HUVECs, KYZ could promote cell proliferation, migration, and tube formation. Further mechanistic study suggested that the KYZ could induce the release of VEGF factor in HUVECs, up-regulate the expression of VEGFR2, and activate the PI3K/AKT and MEK/ERK signaling pathways. CONCLUSIONS: These data show that KYZ may promote angiogenesis through VEGF, PI3K/AKT, and MEK/ERK signaling pathways, suggesting that KYZ exhibited great potential in the treatment of ischemic cardio-cerebrovascular diseases.

3.
Org Biomol Chem ; 18(18): 3563-3574, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32347284

ABSTRACT

Berberine is a naturally occurring isoquinoline alkaloid and has been used as an important functional food additive in China due to its various pharmacological activities. Berberine exhibits great potential for developing anti-diabetic agents against type 2 diabetes mellitus (T2DM), as it can reduce the blood glucose level in many animal models. However, the low anti-diabetic activity and poor bioavailability of berberine (below 5%) by oral administration significantly limit its practical applications. To solve these problems, this article focuses on the structural modification of berberine using some disaccharide groups, because the carbohydrate moiety has been proved to improve the bioavailability and enhance the receptor-binding affinity of drugs. Anti-diabetic investigation of the synthesized compounds was performed in a zebrafish model using a fluorescently labelled glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a glucose tracker. The results indicated that the modification of berberine with carbohydrate groups could give derivatives with improved anti-diabetic activity, in particular the diglucose modified berberine derivative 1 which could dramatically promote the uptake of 2-NBDG in both zebrafish larvae and their eyes even at very low concentrations. Furthermore, the fluorescence-based anti-diabetic investigation method in zebrafish shows great potential for anti-diabetic drug screening.


Subject(s)
Berberine/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Disaccharides/pharmacology , Fluorescence , Hypoglycemic Agents/pharmacology , Animals , Berberine/chemical synthesis , Berberine/chemistry , Blood Glucose/drug effects , Disaccharides/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Molecular Structure , Zebrafish
4.
J Ethnopharmacol ; 253: 112679, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32101773

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia Fructus (GF), a traditional Chinese medicine for clearing heat and purging fire, has been reported to use to treat thrombotic related diseases, but the antithrombotic components are not clear. AIM OF THE STUDY: To develop efficient research methods for discovering some representative antithrombotic compounds of GF. MATERIALS AND METHODS: AB line zebrafish induced by arachidonic acid (AA) was used as a fast and trace-sample-required valuation model for antithrombptic effect of GF samples. Among nine samples of GF from different production areas, two samples with the largest difference in bioactivity were selected for downstream analysis. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was applied to detect compounds in the GF samples. And herbal metabolomics and grey correlation analysis (GCA) were used to identify crucial compounds with potential antithrombotic activity. Then the bioactivity of those important compounds was verified on the zebrafish model. Network pharmacology was used to explore the protein targets and signaling pathways of these compounds. RESULTS: Among the GF samples, S1 (Huoshan City, Anhui Province), and S6 (Jichun City, Hubei Province), significantly differed in thrombus inhibiting bioactivity. HPLC-Q-TOF/MS identified a total of 614 compounds in each GF sample. 19 compounds were selected as important potential variables from metabolomics data by orthogonal partial least squares discriminant analysis (OPLS-DA). And 10 compounds among them were further found to be positively correlated with the antithrombotic bioactivity of GF by GCA. Finally, 3 compounds in them, geniposide, citric acid, and quinic acid, were confirmed as representative antithrombotic chemical markers of GF. Using network pharmacology analysis, some key protein targets, such as proto-oncogene tyrosine-protein kinase Src (SRC) and cyclin-dependent kinase 2 (CDK2), and some signaling pathways were found to supply powerful evidence about antithrombotic mechanisms of three compounds and GF. CONCLUSIONS: This research have succeeded to discover and identify three representative antithrombotic compounds of GF using an efficient integrated research strategy we established, an Omics Discriminant-Grey Correlation-Biological Activity strategy. The antithrombotic chemical makers we found could also contribute to provided more accurate index components for comprehensive quality control of GF.


Subject(s)
Fibrinolytic Agents/therapeutic use , Gardenia , Plant Extracts/therapeutic use , Thrombosis/drug therapy , Animals , Biomarkers/metabolism , Disease Models, Animal , Embryo, Nonmammalian , Female , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Fruit , Male , Metabolomics , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Interaction Maps , Thrombosis/metabolism , Zebrafish
5.
Bioorg Chem ; 94: 103435, 2020 01.
Article in English | MEDLINE | ID: mdl-31812262

ABSTRACT

Two unique nitrogenous sesquiterpene quinone meroterpenoids, dysidinoid B (1) and dysicigyhone A (2), together with eight known analogues (3-10) were isolated and characterized from the marine sponge Dysidea septosa. Their structures with absolute configurations were established by a combination of extensive spectroscopic, electron circular dichroism (ECD) and single-crystal X-ray diffraction data analysis. Structurally, dysicigyhone A (2) possessed a unique benzo[d]oxazolidine-2-one unit. Additionally, dysidinoid B (1) exhibited significant anti-inflammatory effect by inhibiting TNF-α and IL-6 generation with IC50 values of 9.15 µM and 17.62 µM, respectively. Further in vivo anti-inflammatory assay verified that the dysidinoid B (1) alleviated the CuSO4-induced robust acute inflammatory response in zebrafish model.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzoquinones/pharmacology , Inflammation/drug therapy , Nitrogen/pharmacology , Porifera/chemistry , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Benzoquinones/chemistry , Cells, Cultured , Copper Sulfate , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Discovery , Humans , Inflammation/chemically induced , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Mice , Models, Molecular , Molecular Structure , Nitrogen/chemistry , RAW 264.7 Cells , Sesquiterpenes/chemistry , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis , Zebrafish
6.
Article in English | MEDLINE | ID: mdl-31531120

ABSTRACT

The aim of the study is to explore the protective effect of new gelatin (NG, Xin'ejiao in China) on hematopoietic injury caused by chemotherapy. Zebrafish, at 48 hours post fertilization (hpf), was treated with different chemotherapeutic drugs to establish the zebrafish hematopoietic damage model with reduced thrombocytes and erythrocytes. The protecting effects of NG on the thrombocytes and erythrocytes were observed, respectively, on zebrafish models. Then, the RT-PCR method was used to detect the change of mRNA level of the hematopoiesis-related cytokines scl1, c-myb, pu.1, GATA1, and runx1 genes. The results showed that 50 µg·mL-1 and 100 µg·mL-1 NG rescued and increased the thrombocytes numbers induced by vinorelbine (NVB) and chloramphenicol (CHL) and the erythrocytes numbers induced by methotrexate (MTX), doxorubicin (ADM), and mechlorethamine hydrochloride (MH) in zebrafish models. Meanwhile, the mRNA expression of scl1, c-myb, and GATA1 genes in the NG treatment group was raised compared with the MTX treatment group. Also, the mRNA expression of pu.1 and Runx1 in the NG treatment group was reduced compared with the MTX treatment group. In consequence, traditional Chinese medicine NG showed a certain degree protective effect on hematopoiesis injury induced by chemotherapy in this study, which may depend on the promotion of erythrocytes proliferation and the regulation of the hematopoietic genes level.

7.
Chemosphere ; 224: 445-454, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30831495

ABSTRACT

Environmental lead (Pb) exposure is a worldwide threat due to the ubiquitous contamination. Although the adverse effects of Pb on human health have previously been extensively explored, the eco-toxicological effects on aquatic vertebrates still need further investigation. In addition, there is a paucity in the knowledge of behavioral and physiological effects of Pb within the range of environmental relevant concentration (under 100 µg/L) on aquatic organisms such as zebrafish. Herein, we demonstrated that adult male zebrafish (Danio rerio) exposed to Pb at environmental concentration level (1 µg/L, 10 µg/L and 100 µg/L) for 14 days, exhibited obvious neuro-behavioral alteration including disturbed light dark preference, impaired exploratory behaviors and inhibited spatial working memory. The alteration of entire behavioral profiles was further associated with the disturbed expression patterns of mRNA level of key genes involved in neurodevelopment (gap43, syn2a, th, dat, and drd1b), neurotoxic effects (c-fos and gfap), and stress responses (tap, mt1, hsp70, and hsp90). To determine the comprehensively effect of aquatic contaminants on the entire behavioral profiles, behavioral phenomic data were obtained by hierarchical clustering analysis. Overall, we employed behavioral phenomics methods to find that Pb within standard chronic Pb toxic criteria, significantly altered behavioral phenotype and brain physiology, which would exert profound ecological consequences and offer the reference for adjustment of aquatic toxic criteria.


Subject(s)
Behavior, Animal/drug effects , Environmental Pollution/analysis , Lead/toxicity , Nervous System/drug effects , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Phenotype
8.
Front Pharmacol ; 9: 1457, 2018.
Article in English | MEDLINE | ID: mdl-30618751

ABSTRACT

Psoralen toxicity is an issue of wide concern. However, an assay for psoralen-induced developmental toxicity has not been reported to date. Moreover, the underlying mechanism of psoralen-induced developmental toxicity is unclear. Therefore, this study attempted to develop a psoralen-induced developmental toxicity assay in zebrafish embryos/larvae. Psoralen treatment caused a decrease in the hatching rate and body length and a significant increase in the malformation rate of zebrafish. Yolk retention, pericardial edema, swim-bladder deficiency, and curved body shape were also observed after psoralen treatment. Yolk retention might have been caused by an abnormality in lipid metabolism. Further experiments indicated that psoralen exerted toxic effects on the developing heart, liver, phagocytes, and nervous system. Increased generation of reactive oxygen species, inhibition of total superoxide dismutase activity, and increased malondialdehyde concentrations indicated inhibition of antioxidant capacity and the presence of oxidative stress. A greater number of apoptotic cells were observed after psoralen exposure, relative to the control. Furthermore, the results of gene-expression analysis showed that psoralen induced developmental toxicity by means of oxidative stress, apoptosis, and energy metabolism abnormalities. These findings will be helpful in understanding psoralen-induced toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...