Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Stem Cell Res Ther ; 15(1): 55, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414053

ABSTRACT

BACKGROUND: Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS: NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS: In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-ß-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION: Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.


Subject(s)
Amyotrophic Lateral Sclerosis , Neural Stem Cells , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Cellular Senescence , Mice, Transgenic , Neural Stem Cells/metabolism , Peptides , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
2.
Redox Biol ; 69: 102972, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056310

ABSTRACT

Oxidative stress (OS) is regarded as the dominant theory for aging. While compelling correlative data have been generated to support the OS theory, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and aging has not been firmly established. Superoxide dismutase 1 (SOD1) is a primary antioxidant in all cells. It is, however, susceptible to oxidation due to OS and gains toxic properties to cells. This study investigates the role of oxidized SOD1 derived from amyotrophic lateral sclerosis (ALS) linked SOD1 mutations in cell senescence and aging. Herein, we have shown that the cell line NSC34 expressing the G93A mutation of human SOD1 (hSOD1G93A) entered premature senescence as evidenced by a decreased number of the 5-ethynyl-2'-deoxyuridine (EdU)-positive cells. There was an upregulation of cellular senescence markers compared to cells expressing the wild-type human SOD1 (hSOD1WT). Transgenic mice carrying the hSOD1G93A gene showed aging phenotypes at an early age (135 days) with high levels of P53 and P16 but low levels of SIRT1 and SIRT6 compared with age-matched hSOD1WT transgenic mice. Notably, the levels of oxidized SOD1 were significantly elevated in both the senescent NSC34 cells and 135-day hSOD1G93A mice. Selective removal of oxidized SOD1 by our CT4-directed autophagy significantly decelerated aging, indicating that oxidized SOD1 is a causal factor of aging. Intriguingly, mitochondria malfunctioned in both senescent NSC34 cells and middle-aged hSODG93A transgenic mice. They exhibited increased production of mitochondrial-derived vesicles (MDVs) in response to mild OS in mutant humanSOD1 (hSOD1) transgenic mice at a younger age; however, the mitochondrial response gradually declined with aging. In conclusion, our data show that oxidized SOD1 derived from ALS-linked SOD1 mutants is a causal factor for cellular senescence and aging. Compromised mitochondrial responsiveness to OS may serve as an indicator of premature aging.


Subject(s)
Amyotrophic Lateral Sclerosis , Sirtuins , Animals , Humans , Infant , Mice , Middle Aged , Aging/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , Mice, Transgenic , Motor Neurons , Mutation , Sirtuins/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
3.
iScience ; 26(12): 108518, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38089576

ABSTRACT

Myelin sheath in the central nervous system (CNS) is essential for efficient action potential conduction. Microglia, the macrophages in the CNS, are suggested to regulate myelin development. However, the specific involvement of microglia in initial myelination is yet to be elucidated. Here, first, by culturing neural stem cells, we demonstrated that myelin sheath formation only occurred in the presence of a microglia-conditioned medium. Furthermore, the absence of C1q, a microglia-derived factor, resulted in myelination failure in the neural stem cell culture. Additionally, adding native human C1q protein was sufficient to induce myelination in vitro. Finally, in the C1q conditional knockout mouse model (C1qaFL/FL: Cx3cr1CreER), C1q deficiency prior to the onset of myelination led to reduced myelin thickness and elevated g-ratio during initial myelination. This study uncovers the pivotal role of microglia-derived C1q in developmental myelination and could potentially pave the way for new therapeutic strategies for treating demyelinating diseases.

4.
Cell Mol Life Sci ; 80(10): 304, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752364

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS: Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS: Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS: The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Animals , Mice , Amyotrophic Lateral Sclerosis/genetics , Superoxide Dismutase-1/genetics , Disease Models, Animal , Motor Neurons
5.
Ageing Res Rev ; 88: 101955, 2023 07.
Article in English | MEDLINE | ID: mdl-37196864

ABSTRACT

Aging is a complex process that features a functional decline in many organelles. Although mitochondrial dysfunction is suggested as one of the determining factors of aging, the role of mitochondrial quality control (MQC) in aging is still poorly understood. A growing body of evidence points out that reactive oxygen species (ROS) stimulates mitochondrial dynamic changes and accelerates the accumulation of oxidized by-products through mitochondrial proteases and mitochondrial unfolded protein response (UPRmt). Mitochondrial-derived vesicles (MDVs) are the frontline of MQC to dispose of oxidized derivatives. Besides, mitophagy helps remove partially damaged mitochondria to ensure that mitochondria are healthy and functional. Although abundant interventions on MQC have been explored, over-activation or inhibition of any type of MQC may even accelerate abnormal energy metabolism and mitochondrial dysfunction-induced senescence. This review summarizes mechanisms essential for maintaining mitochondrial homeostasis and emphasizes that imbalanced MQC may accelerate cellular senescence and aging. Thus, appropriate interventions on MQC may delay the aging process and extend lifespan.


Subject(s)
Aging , Cellular Senescence , Humans , Aging/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Longevity
6.
ASN Neuro ; 15: 17590914231163039, 2023.
Article in English | MEDLINE | ID: mdl-36974372

ABSTRACT

Myelination contributes not only to the rapid nerve conduction but also to axonal insulation and protection. In the central nervous system (CNS), the initial myelination features a multistep process where oligodendrocyte precursor cells undergo proliferation and migration before differentiating into mature oligodendrocytes. Mature oligodendrocytes then extend processes and wrap around axons to form the multilayered myelin sheath. These steps are tightly regulated by various cellular and molecular mechanisms, such as transcription factors (Olig family, Sox family), growth factors (PDGF, BDNF, FGF-2, IGF), chemokines/cytokines (TGF-ß, IL-1ß, TNFα, IL-6, IFN-γ), hormones (T3), axonal signals (PSA-NCAM, L1-CAM, LINGO-1, neural activity), and intracellular signaling pathways (Wnt/ß-catenin, PI3 K/AKT/mTOR, ERK/MAPK). However, the fundamental mechanisms for initial myelination are yet to be fully elucidated. Identifying pivotal mechanisms for myelination onset, development, and repair will become the focus of future studies. This review focuses on the current understanding of how CNS myelination is initiated and also the regulatory mechanisms underlying the process.


Subject(s)
Central Nervous System , Myelin Sheath , Myelin Sheath/metabolism , Axons/metabolism , Oligodendroglia/metabolism , Signal Transduction
7.
Brain Res Bull ; 195: 99-108, 2023 04.
Article in English | MEDLINE | ID: mdl-36805464

ABSTRACT

Preconditioning with inhalative carbon monoxide (CO) at low concentrations provides protection against hypoxic and ischemic insults in the brain and heart. The present study aims to test a hypothesis that activation of mitochondrial-derived vesicles (MDVs) is a mechanism underlying the protective effect of CO preconditioning. Here we show that CO preconditioning induced mild oxidative stress and activated massive production of MDVs. Short exposure to a low concentration of carbon monoxide-releasing molecule 2 (CORM-2), a donor of carbon monoxide, prevented oligodendrocyte precursor cells (OPCs) from subsequent death induced by high doses of CO, and protected Chinese hamster ovary (CHO) cells against oxygen-glucose deprivation (OGD)-induced cell death. Furthermore, inhibition of lysosomal activity prevented degradation of MDVs, abolished MDV-mediated mitochondrial quality control, and diminished the protective effect of CO preconditioning. Altogether, our data provide direct evidence suggesting that MDV-mediated mitochondrial quality control may have a novel role in CO preconditioning.


Subject(s)
Carbon Monoxide , Mitochondria , Animals , Cricetinae , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , CHO Cells , Cricetulus , Mitochondria/metabolism , Oxidative Stress
9.
Anal Chim Acta ; 1238: 340163, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36464456

ABSTRACT

Misfolding of superoxide dismutase-1 (SOD1) has been correlated with many neurodegenerative diseases, such as Amyotrophic lateral sclerosis's and Alzheimer's among others. However, it is unclear whether misfolded SOD1 plays a role in another neurodegenerative disease of white matter lesions (WMLs). In this study, a sensitive and specific method based on SERS technique was proposed for quantitative detection of misfolded SOD1 content in WMLs. To fabricate the double antibodysandwich substrates for SERS detection, gold nanostars modified with capture antibody were immobilized on glass substrates to prepare active SERS substrates, and then SERS probes conjugated with a Raman reporter and a specific target antibody were coupled with active SERS substrates. This SERS substrates had been employed for quantitative detection of misfolded SOD1 levels in WMLs and exhibited excellent stability, reliability, and accuracy. Moreover, experimental results indicated that the level of misfolded SOD1 increased with the increase in age and the degree of WMLs. Hence, misfolded SOD1 may be a potential blood marker for WMLs and aging. Meanwhile, SERS-based gold nanostars have great clinical application potential in the screening, diagnosis and treatment of WMLs.


Subject(s)
Neurodegenerative Diseases , Proteostasis Deficiencies , Superoxide Dismutase-1 , White Matter , Humans , Antibodies , Gold , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Reproducibility of Results , Superoxide Dismutase , Superoxide Dismutase-1/analysis , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , White Matter/metabolism , White Matter/physiopathology , Proteostasis Deficiencies/diagnosis , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism
10.
Biomolecules ; 12(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36551300

ABSTRACT

Neurodegeneration can benefit from ischemic preconditioning, a natural adaptive reaction to sublethal noxious stimuli. Although there is growing interest in advancing preconditioning to preserve brain function, preconditioning is not yet considered readily achievable in clinical settings. One of the most challenging issues is that there is no fine line between preconditioning stimuli and lethal stimuli. Here, we show deleterious effect of preconditioning on oligodendrocyte precursor cells (OPCs). We identified Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a mitochondrial BH3-only protein specifically involved in OPCs loss after preconditioning. Repeated ischemia stabilized BNIP3 and increased the vulnerability of OPCs to subsequent ischemic events. BNIP3 became mitochondrial-bound and was concurrent with the dysfunction of monocarboxylate transporter 1 (MCT1). Inhibition of BNIP3 by RNAi or necrostatin-1 (Nec-1) and knocking out of BNIP3 almost completely prevented OPCs loss and preserved white matter integrity. Together, our results suggest that the unfavorable effect of BNIP3 on OPCs should be noted for safe development of ischemic tolerance. BNIP3 inhibition appears to be a complementary approach to improve the efficacy of preconditioning for ischemic stroke.


Subject(s)
Ischemic Preconditioning , White Matter , Oligodendroglia/metabolism , Mitochondria/metabolism
11.
Dose Response ; 20(3): 15593258221112959, 2022.
Article in English | MEDLINE | ID: mdl-35958275

ABSTRACT

Background: Borojó (Borojoa patinoi Cuatrec) fruit has recently been shown to have a variety of health benefit, but the mechanisms have been little studied. The aim of this study was to investigate the effect of 4,8-dicarboxyl-8,9-iridoid-1-glycoside (388) on proliferation and differentiation of embryonic neural stem cells (NSCs). Methods: NSCs were treated with 388 and stem cell differentiation was determined by western blotting and immunofluorescence staining. The role of MeCP2 in 388-mediated embryonic NSCs differentiation was examined. Results: The results showed that in the presence of mitogen when NSCs proliferated and maintained their multipotency, treatment with 388 did not affect the viability of NSCs. Following mitogen withdrawal to initiate NSC differentiation, treatment with 388 at the doses of 10 and 50 µg/mL significantly increased neural differentiation in both cortex and spinal cord-derived culture. 388 also significantly up-regulated MeCP2 expression. The expression of the neuronal and oligodendrocytic markers was enhanced after addition of 388 in the differentiation culture. However, knockdown of MeCP2 results in inhibition of NSC differentiation, and the pro-differentiation effect of 388 was mostly abolished. Conclusions: This study confirmed that 388 stimulates differentiation of NSCs and identifies its mechanism of action by upregulating MeCP2.

12.
Pharmaceutics ; 14(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35214030

ABSTRACT

The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.

13.
Cell Mol Neurobiol ; 42(6): 1983-1994, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33779883

ABSTRACT

Excessive mitophagy plays a role in neuronal death in spinal cord injury (SCI), its molecular regulation remains largely unknown. The present study aims to determine the role of NIX, a member of a unique subfamily of death-inducing mitochondrial proteins, in the regulation of mitophagy in SCI. Here we show that NIX is highly upregulated in SCI and hypoxia, and localized to mitochondria. The mitochondria-bound NIX interacts with autophagosome-localized LC3 (Microtubule-associated protein 1 light chain 3) to form a mitochondria-NIX-LC3-autophagosome complex, resulting in excessive mitophagy in SCI. Downregulation of NIX by RNA interference restores the function of mitochondria in spinal cord neurons under hypoxia. Importantly, inhibition of NIX improves recovery of locomotor function in rats after SCI. The present study demonstrates that NIX interacts with LC3 to activate excessive mitophagy in SCI. Inhibition of NIX is therefore likely a neuroprotective strategy.


Subject(s)
Membrane Proteins , Mitochondrial Proteins , Mitophagy , Proto-Oncogene Proteins , Spinal Cord Injuries , Animals , Hypoxia , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Rats , Spinal Cord Injuries/metabolism
14.
Nutr Neurosci ; 25(7): 1534-1547, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33487123

ABSTRACT

BACKGROUND: Ketogenic diet (KD) has been identified as a potential therapy to enhance recovery after traumatic brain injury (TBI). Diffuse axonal injury (DAI) is a common type of traumatic brain injury that is characterized by delayed axonal disconnection. Previous studies showed that demyelination resulting from oligodendrocyte damage contributes to axonal degeneration in DAI. AIM: The present study tests a hypothesis that ketone bodies from the ketogenic diet confers protection for myelin and attenuates degeneration of demyelinated axon in DAI. METHODS: A modified Marmarou's model of DAI was induced in adult rats. The DAI rats were fed with KD and analyzed with western blot, transmission electron microscope, ELISA test and immunohistochemistry. Meanwhile, a co-culture of primary oligodendrocytes and neurons was treated with ketone body ß-hydroxybutryate (ßHB) to test for its effects on the myelin-axon unit. RESULTS: Here we report that rats fed with KD showed an increased fatty acid metabolism and ketonemia. This dietary intervention significantly reduced demyelination and attenuated axonal damage in rats following DAI, likely through inhibition of DAI-induced excessive mitochondrial fission and promoting mitochondrial fusion. In an in vitro model of myelination, the ketone body ßHB increased myelination significantly and reduced axonal degeneration induced by glucose deprivation (GD). ßHB robustly increased cell viability, inhibited GD-induced collapse of mitochondrial membrane potential and attenuated death of oligodendrocytes. CONCLUSION: Ketone bodies protect myelin-forming oligodendrocytes and reduce axonal damage. Ketogenic diet maybe a promising therapy for DAI.


Subject(s)
Brain Injuries, Traumatic , Demyelinating Diseases , Diet, Ketogenic , Diffuse Axonal Injury , Animals , Axons/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/prevention & control , Diffuse Axonal Injury/metabolism , Disease Models, Animal , Ketone Bodies , Ketones , Myelin Sheath , Rats
15.
Front Pharmacol ; 12: 617537, 2021.
Article in English | MEDLINE | ID: mdl-34276354

ABSTRACT

Background: Traditional therapeutics targeting Alzheimer's disease (AD)-related subpathologies have so far proved ineffective. Drug repurposing, a more effective strategy that aims to find new indications for existing drugs against other diseases, offers benefits in AD drug development. In this study, we aim to identify potential anti-AD agents through enrichment analysis of drug-induced transcriptional profiles of pathways based on AD-associated risk genes identified from genome-wide association analyses (GWAS) and single-cell transcriptomic studies. Methods: We systematically constructed four gene lists (972 risk genes) from GWAS and single-cell transcriptomic studies and performed functional and genes overlap analyses in Enrichr tool. We then used a comprehensive drug repurposing tool Gene2Drug by combining drug-induced transcriptional responses with the associated pathways to compute candidate drugs from each gene list. Prioritized potential candidates (eight drugs) were further assessed with literature review. Results: The genomic-based gene lists contain late-onset AD associated genes (BIN1, ABCA7, APOE, CLU, and PICALM) and clinical AD drug targets (TREM2, CD33, CHRNA2, PRSS8, ACE, TKT, APP, and GABRA1). Our analysis identified eight AD candidate drugs (ellipticine, alsterpaullone, tomelukast, ginkgolide A, chrysin, ouabain, sulindac sulfide and lorglumide), four of which (alsterpaullone, ginkgolide A, chrysin and ouabain) have shown repurposing potential for AD validated by their preclinical evidence and moderate toxicity profiles from literature. These support the value of pathway-based prioritization based on the disease risk genes from GWAS and scRNA-seq data analysis. Conclusion: Our analysis strategy identified some potential drug candidates for AD. Although the drugs still need further experimental validation, the approach may be applied to repurpose drugs for other neurological disorders using their genomic information identified from large-scale genomic studies.

16.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804256

ABSTRACT

Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.


Subject(s)
Acid Phosphatase/genetics , Cerebellar Ataxia/genetics , Cerebellar Cortex/metabolism , Hedgehog Proteins/genetics , N-Myc Proto-Oncogene Protein/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/pathology , Cerebellar Cortex/abnormalities , Cerebellar Cortex/pathology , Cytoplasmic Granules/genetics , Cytoplasmic Granules/pathology , Disease Models, Animal , Gene Expression Regulation, Developmental , Humans , Lysosomes/genetics , Lysosomes/pathology , Mice , Mutation , Neurons/metabolism , Neurons/pathology , Purkinje Cells/metabolism , Purkinje Cells/pathology , Signal Transduction/genetics
17.
Geroscience ; 43(2): 507-515, 2021 04.
Article in English | MEDLINE | ID: mdl-33608813

ABSTRACT

Why certain people relish healthy aging throughout their life span while others suffer pathological consequences? In this review, we focus on some of the dominant paradigms of pathological aging, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), and predict that the antioxidant superoxide dismutase 1 (SOD1), when post-translationally modified by aging-associated oxidative stress, acts as a mechanism to accelerated aging in these age-related neurodegenerative diseases. Oxidative modifications of natively reduced SOD1 induce pathological confirmations such as misfolding, leading to a subsequent formation of monomeric, oligomeric, and multimeric aggregates. Misfolded SOD1 propagates like prions from cell to cell. These modified conformations are detected in brain tissues in ALS, AD, and PD, and are considered a contributing factor to their initial pathogenesis. We have also elaborated on oxidative stress-induced non-native modifications of SOD1 and offered a logistic argument on their global implication in accelerated or pathological aging in the context of ALS, AD, and PD.


Subject(s)
Aging/pathology , Amyotrophic Lateral Sclerosis , Parkinson Disease , Protein Processing, Post-Translational , Superoxide Dismutase-1/genetics , Humans , Protein Folding , Superoxide Dismutase-1/metabolism
18.
J Neurochem ; 156(6): 929-942, 2021 03.
Article in English | MEDLINE | ID: mdl-32112403

ABSTRACT

Necrostatin-1 (Nec-1) has previously been shown to protect neurons from death in traumatic and ischemic brain injuries. This study tests the hypothesis that Nec-1 protects neural cells against traumatic and ischemic brain injuries through inhibition of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3). We have used biochemical and morphological techniques to determine the inhibition of Nec-1 on BNIP3-induced cell death and to identify its mechanism of action in in vivo and in vitro models of neurodegeneration. Here we show that Nec-1 significantly increased neuronal viability following prolonged exposure to hypoxia in vitro, and attenuated myelin damage and neuronal death in traumatic brain injury and cerebral ischemia in Sprague-Dawley rats. Nec-1 alleviated traumatic brain injury-induced up-regulation of BNIP3 in mature oligodendrocytes. In isolated mitochondria, Nec-1 prevented BNIP3 from integrating into mitochondria by modifying its binding sites on the mitochondria. Consequently, Nec-1 robustly inhibited BNIP3-induced collapse of mitochondrial membrane potential and reduced the opening probability of mitochondrial permeability transition pores. Nec-1 also preserved mitochondrial ultrastructure and suppressed BNIP3-induced nuclear translocation of apoptosis-inducing factor. In conclusion, Nec-1 protects neurons and oligodendrocytes against traumatic and ischemic brain injuries by targeting the BNIP3-induced cell death pathway, and is a novel inhibitor for BNIP3. Cover Image for this issue: https://doi.org/10.1111/jnc.15056.


Subject(s)
Imidazoles/pharmacology , Indoles/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Neuroprotective Agents/pharmacology , Animals , Apoptosis Inducing Factor/metabolism , Binding Sites/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cell Death , Infarction, Middle Cerebral Artery/pathology , Male , Membrane Potential, Mitochondrial/drug effects , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/prevention & control , Permeability/drug effects , Rats , Rats, Sprague-Dawley
19.
Front Psychiatry ; 11: 815, 2020.
Article in English | MEDLINE | ID: mdl-32903698

ABSTRACT

Delayed neurologic sequelae (DNS) are recurrent-transient neuropsychiatric consequences of carbon monoxide (CO) intoxication. Pathologically DNS features damages to the brain white matter. Here we test a hypothesis that direct cytotoxicity of CO to oligodendrocytes plays a role in the development of DNS. In an in vitro model of CO poisoning with the carbon monoxide releasing molecule-2 (CORM-2) as a CO donor, we show that CORM-2 at concentrations higher than 200 µM significantly inhibited viability and caused significant death of PC12 cells. Similar minimum toxicity concentration was observed on primary brain cells including neurons, astrocytes, and microglia. Interestingly, oligodendrocytes showed cytotoxicity to CORM-2 at a much lower concentration (100 µM). We further found that CORM-2 at 100 µM inhibited proteolipid protein (PLP) production and reduced myelin coverage on axons in an in vitro model of myelination. Our results show that direct cytotoxicity is a mechanism of CO poisoning and DNS may result from a high susceptibility of oligodendrocytes to CO poisoning.

20.
ACS Chem Neurosci ; 11(17): 2717-2727, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32667776

ABSTRACT

Among the brain cells, oligodendrocyte progenitor cells (OPCs) are the most vulnerable in response to hypoxic and ischemic insults, of which the mechanism remains unknown. Brain cells are known to import or export lactate via differentially expressed monocarboxylate transporters (MCTs) to maintain energy metabolism and pH homeostasis. The present study aims to determine the role of MCT1 in the high vulnerability of OPCs. Here we show that a mild ischemic condition equivalent to ischemic preconditioning caused detectable loss of OPCs. MCT1, which is primarily expressed in oligodendrocyte lineage cells including OPCs, was up-regulated immediately under oxygen-glucose deprivation (OGD) conditions. However, persistent hypoxia, but not hypoglycemia, inhibited the function of MCT1, leading to an intracellular lactate accumulation and acidosis in OPCs. Neurons, which express primarily MCT2, were able to export lactate and maintain an intracellular pH homeostasis under similar conditions. The results support that compromised lactate efflux resulting from hypoxia-induced dysfunction of MCT1 contributes to the high vulnerability of OPCs.


Subject(s)
Oligodendrocyte Precursor Cells , Symporters , Lactic Acid , Monocarboxylic Acid Transporters , Oligodendroglia , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...