Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 189, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486149

ABSTRACT

BACKGROUND: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).


Subject(s)
Chlorophyll , Red Light , Chlorophyll/metabolism , Transcriptome , Photosynthesis , Sugars , Carbon
2.
Chemosphere ; 350: 141186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215833

ABSTRACT

Increased use of bioplastics, such as polylactic acid (PLA), helps in reducing greenhouse gas emissions, decreases energy consumption and lowers pollution, but its degradation efficiency has much room for improvement. The degradation rate of electrospun PLA fibers of varying diameters ranging from 0.15 to 1.33 µm is measured during hydrolytic degradation under different pH from 5.5 to 10, and during aerobic biodegradation in seawater supplemented with activated sewage sludge. In hydrolytic conditions, varying PLA fiber diameter had significant influence over percentage weight loss (W%L), where faster degradation was achieved for PLA fibers with smaller diameter. W%L was greatest for PLA-5 > PLA-12 > PLA-16 > PLA-20, with average W%L at 30.7%, 27.8%, 17.2% and 14.3% respectively. While different pH environment does not have a significant influence on PLA degradation, with W%L only slightly higher for basic environments. Similarly biodegradation displayed faster degradation for small diameter fibers with PLA-5 attaining the highest degree of biodegradation at 22.8% after 90 days. Hydrolytic degradation resulted in no significant structural change, while biodegradation resulted in significant hydroxyl end capping products on the PLA surface. Scanning electron microscopy (SEM) imaging of degraded PLA fibers showed a deteriorated morphology of PLA-5 and PLA-12 fibers with increased adhesion structures and irregularly shaped fibers, while a largely unmodified morphology for PLA-16 and PLA-20.


Subject(s)
Polyesters , Polyesters/chemistry , Hydrolysis , Microscopy, Electron, Scanning
3.
Macromol Rapid Commun ; 45(5): e2300543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38102953

ABSTRACT

Entropy is a universal concept across the physics of mixtures. While the role of entropy in other multicomponent materials has been appreciated, its effects in polymers and plastics have not. In this work, it is demonstrated that the seemingly small mixing entropy contributes to the miscibility and performance of polymer alloys. Experimental and modeling studies on over 30 polymer pairs reveal a strong correlation between entropy, morphology, and mechanical properties, while elucidating the mechanism behind: in polymer blends with weak interactions, entropy leads to homogeneously dispersed nanosized domains stabilized by highly entangled chains. This unique microstructure promotes uniform plastic deformation at the interface, thus improving the toughness of conventional brittle polymers by 1-2 orders of magnitude without sacrificing other properties, analogous to high-entropy metallic alloys. The proposed strategy also applies to ternary polymer systems and copolymers, offering a new pathway toward the development of sustainable polymers.


Subject(s)
Alloys , Polymers , Entropy , Polymers/chemistry , Alloys/chemistry , Plastics
4.
Mol Hortic ; 3(1): 21, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853418

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) /Cas12a system, also known as CRISPR/Cpf1, has been successfully harnessed for genome engineering in many plants, but not in grapevine yet. Here we developed and demonstrated the efficacy of CRISPR/Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in inducing targeted mutagenesis by targeting the tonoplastic monosaccharide transporter1 (TMT1) and dihydroflavonol-4-reductase 1 (DFR1) genes in 41B cells. Knockout of DFR1 gene altered flavonoid accumulation in dfr1 mutant cells. Heat treatment (34℃) improved the editing efficiencies of CRISPR/LbCas12a system, and the editing efficiencies of TMT1-crRNA1 and TMT1-crRNA2 increased from 35.3% to 44.6% and 29.9% to 37.3% after heat treatment, respectively. Moreover, the sequences of crRNAs were found to be predominant factor affecting editing efficiencies irrespective of the positions within the crRNA array designed for multiplex genome editing. In addition, genome editing with truncated crRNAs (trucrRNAs) showed that trucrRNAs with 20 nt guide sequences were as effective as original crRNAs with 24 nt guides in generating targeted mutagenesis, whereas trucrRNAs with shorter regions of target complementarity ≤ 18 nt in length may not induce detectable mutations in 41B cells. All these results provide evidence for further applications of CRISPR/LbCas12a system in grapevine as a powerful tool for genome engineering.

5.
Ann Bot ; 132(5): 1033-1050, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37850481

ABSTRACT

Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.


Subject(s)
Vitis , Wine , Vitis/genetics , Anthocyanins/analysis , Anthocyanins/metabolism , Fruit/genetics , Fruit/metabolism , Wine/analysis
6.
Hortic Res ; 10(9): uhad160, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719274

ABSTRACT

The quality of planting materials is the foundation for productivity, longevity, and berry quality of perennial grapevines with a long lifespan. Manipulating the nursery light spectrum may speed up the production of healthy and high-quality planting vines but the underlying mechanisms remain elusive. Herein, the effects of different monochromatic lights (green, blue, and red) on grapevine growth, leaf photosynthesis, whole-plant carbon allocation, and transcriptome reprograming were investigated with white light as control. Results showed that blue and red lights were favorable for plantlet growth in comparison with white light. Blue light repressed excessive growth, significantly increased the maximum net photosynthetic rate (Pn) of leaves by 39.58% and leaf specific weight by 38.29%. Red light increased the dry weight of the stem by 53.60%, the starch content of the leaf by 53.63%, and the sucrose content of the stem by 230%. Green light reduced all photosynthetic indexes of the grape plantlet. Photosynthetic photon flux density (PPFD)/Ci-Pn curves indicated that blue light affected photosynthetic rate depending on the light intensity and CO2 concentration. RNA-seq analysis of different organs (leaf, stem, and root) revealed a systematic transcriptome remodeling and VvCOP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), VvHY5 (ELONGATED HYPOCOTYL5), VvHYH (HY5 HOMOLOG), VvELIP (early light-induced protein) and VvPIF3 (PHYTOCHROME INTERACTING FACTOR 3) may play important roles in this shoot-to-root signaling. Furthermore, the correlation network between differential expression genes and physiological traits indicated that VvpsbS (photosystem II subunit S), Vvpsb28 (photosystem II subunit 28), VvHYH, VvSUS4 (sucrose synthase 4), and VvALDA (fructose-bisphosphate aldolase) were pertinent candidate genes in responses to different light qualities. Our results provide a foundation for optimizing the light recipe of grape plantlets and strengthen the understanding of light signaling and carbon metabolism under different monochromatic lights.

7.
Adv Mater ; 35(28): e2301532, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37197803

ABSTRACT

Hydrogels find important roles in biomedicine, wearable electronics, and soft robotics, but their mechanical properties are often unsatisfactory. Conventional tough hydrogel designs are based on hydrophilic networks with sacrificial bonds, while the incorporation of hydrophobic polymers into hydrogels is less well understood. In this work, a hydrogel toughening strategy is demonstrated by introducing a hydrophobic polymer as reinforcement. Semicrystalline hydrophobic polymer chains are "woven" into a hydrophilic network via entropy-driven miscibility. In-situ-formed sub-micrometer crystallites stiffen the network, while entanglements between hydrophobic polymer and hydrophilic network enable large deformation before failure. The hydrogels are stiff, tough, and durable at high swelling ratios of 6-10, and the mechanical properties are tunable. Moreover, they can effectively encapsulate both hydrophobic and hydrophilic molecules.


Subject(s)
Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions
8.
J Org Chem ; 88(3): 1560-1567, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36634252

ABSTRACT

Silver-catalyzed deuteration of nitroaromatics has been achieved using D2O as the deuterium source. Distinct from the well-established directing group-guided hydrogen-isotope exchange, this protocol showed an interesting deuteration pattern, where considerable deuterium accumulation was observed around the aromatic rings. Controlling experiments suggested that the deuteration was initiated by a silver-promoted C-H activation. Therefore, a tentative two-stage deuteration mechanism involving aryl-silver species was proposed to explain the deuteration on meta- and para-positions.

9.
J Colloid Interface Sci ; 635: 197-207, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36587573

ABSTRACT

HYPOTHESIS: Underwater oil-repellency of polyelectrolyte brushes has been attributed mainly to electric double-layer repulsion forces based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Many non-polyelectrolyte materials also exhibit oil-repellent behaviour, but it is not clear if there exist similar electric double-layer repulsion and if it is the sole mechanism governing their underwater oil-repellency. EXPERIMENTS/SIMULATIONS: In this article, the oil-repellency of highly amorphous cellulose exhibiting is investigated in detail, through experiments and molecular dynamics simulations (MDS). FINDINGS: It was found that the stable surface hydration on regenerated cellulose was due to a combination of long-range electrostatic repulsions (DLVO theory) and short-range interfacial hydrogen bonding between cellulose and water molecules (as revealed by MDS). The presence of a stable water layer of about 200 nm thick (similar to that of polyelectrolyte brushes) was confirmed. Such stable surface hydration effectively separates cellulose surface from oil droplets, resulting in extremely low adhesion between them. As a demonstration of its practicality, regenerated cellulose membranes were fabricated via electrospinning, and they exhibit high oil/water separation efficiencies (including oil-in-water emulsions) as well as self-cleaning ability.

10.
Genes (Basel) ; 13(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35886036

ABSTRACT

Through its role in the regulation of gene expression, DNA methylation can participate in the control of specialized metabolite production. We have investigated the link between DNA methylation and anthocyanin accumulation in grapevine using the hypomethylating drug, zebularine and Gamay Teinturier cell suspensions. In this model, zebularine increased anthocyanin accumulation in the light, and induced its production in the dark. To unravel the underlying mechanisms, cell transcriptome, metabolic content, and DNA methylation were analyzed. The up-regulation of stress-related genes, as well as a decrease in cell viability, revealed that zebularine affected cell integrity. Concomitantly, the global DNA methylation level was only slightly decreased in the light and not modified in the dark. However, locus-specific analyses demonstrated a decrease in DNA methylation at a few selected loci, including a CACTA DNA transposon and a small region upstream from the UFGT gene, coding for the UDP glucose:flavonoid-3-O-glucosyltransferase, known to be critical for anthocyanin biosynthesis. Moreover, this decrease was correlated with an increase in UFGT expression and in anthocyanin content. In conclusion, our data suggest that UFGT expression could be regulated through DNA methylation in Gamay Teinturier, although the functional link between changes in DNA methylation and UFGT transcription still needs to be demonstrated.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Cytidine/analogs & derivatives , DNA Methylation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
12.
J Colloid Interface Sci ; 615: 759-767, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35176542

ABSTRACT

HYPOTHESIS: Supramolecular self-assemblies involving non-covalent interactions play important roles in material science as well as living systems as they result in unique properties and/or functions. However, understanding of their self-assembly mechanism and crystallization has remained rudimentary. EXPERIMENT: Here, we focus on biomolecular fatty acid and dopamine, which commonly exist in biological systems and closely related to neurodegenerative diseases, and investigate their self-assembly pathway by optical and fluorescence microscopy, DLS, SAXS, TEM, 2D-NMR, etc. FINDINGS: It is found that they could form the crystalline plates in solution or via a metastable liquid - liquid phase separation (LLPS). The nucleation and growth of crystalline plates observed occurs in solution or the dilute phase of LLPS, and not within the concentrated coacervate phase. This is because in coacervate, dopamine intercalates into fatty acid through hydrophobic and electrostatic interaction, which hinders the rearrangement of molecules and nucleation process, whereas in solution or dilute phase, they have the mobility to arrange into ordered structures to maximize electrostatic, hydrogen bonding and π-π interactions, leading to nucleation and crystallization. Moreover, the transitions between the coacervates and crystalline phase can be realized by adjusting the temperature. Our results shed light on the multistep nucleation in the presence of LLPS, as well as molecular mechanisms involved, thus further extending the nucleation-growth mechanisms.


Subject(s)
Dopamine , Crystallization , Decanoic Acids , Scattering, Small Angle , X-Ray Diffraction
13.
Adv Sci (Weinh) ; 9(4): e2103953, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34796698

ABSTRACT

With the ever-rapid miniaturization of portable, wearable electronics and Internet of Things, the volumetric performance is becoming a much more pertinent figure-of-merit than the conventionally used gravimetric parameters to evaluate the charge-storage capacity of electrochemical capacitors (ECs). Thus, it is essential to design the ECs that can store as much energy as possible within a limited space. As the most critical component in ECs, "porous and yet dense" electrodes with large ion-accessible surface area and optimal packing density are crucial to realize desired high volumetric performance, which have demonstrated to be rather challenging. In this review, the principles and fundamentals of ECs are first observed, focusing on the key understandings of the different charge storage mechanisms in porous electrodes. The recent and latest advances in high-volumetric-performance ECs, developed by the rational design and fabrication of "porous and yet dense" electrodes are then examined. Particular emphasis of discussions then concentrates on the key factors impacting the volumetric performance of porous carbon-based electrodes. Finally, the currently faced challenges, further perspectives and opportunities on those purposely engineered porous electrodes for high-volumetric-performance EC are presented, aiming at providing a set of guidelines for further design of the next-generation energy storage devices.

14.
J Org Chem ; 86(19): 13350-13359, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34516112

ABSTRACT

A practical and scalable ortho-selective deuteration of aromatic aldehydes was accomplished by Pd-catalyzed hydrogen isotope exchange with deuterium oxide as an inexpensive deuterium source. The use of tert-leucine as a transient directing group facilitates the exchange, affording a wide range of ortho-deuterated aromatic aldehydes with deuterium incorporation up to 97%. The control experiments suggest that the addition of silver trifluoroacetate resists the unexpected reduction of Pd(II), while the theoretical study indicates a rapid reversible concerted metalation-deprotonation process.

15.
Planta ; 253(4): 84, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33788027

ABSTRACT

MAIN CONCLUSION: White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp. Here, we investigated the teinturier cvs. 'Gamay de Bouze' and 'Gamay Fréaux' (two somatic variants of the white-fleshed cv. 'Gamay') through metabolic and transcript analysis to clarify whether these two somatic variants have the same anthocyanin accumulation pattern in the skin and pulp, and whether primary metabolites are also affected. The skin of the three cultivars and the pulp of 'Gamay de Bouze' begun to accumulate anthocyanins at the onset of berry ripening. However, the pulp of 'Gamay Fréaux' exhibited a distinct anthocyanin accumulation pattern, starting as early as fruit set with very low level of sugars. The highest level of anthocyanins was found in 'Gamay Fréaux' skin, followed by 'Gamay de Bouze' and 'Gamay'. Consistently, the transcript abundance of genes involved in anthocyanin biosynthesis were in line with the anthocyanin levels in the three cultivars. Despite no evident differences in pulp sugar content, the concentration of glucose and fructose in the skin of 'Gamay Fréaux' was only half of those in the skin of 'Gamay' and 'Gamay de Bouze' throughout all berry ripening, suggesting an uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. The study provides a comprehensive view of metabolic consequences in grape somatic variants and the three almost isogenic genotypes can serve as ideal reagents to further uncover the mechanisms underlying the linkage between sugar and anthocyanin accumulation.


Subject(s)
Vitis , Anthocyanins , Fructose , Fruit/genetics , Gene Expression Regulation, Plant , Sugars , Vitis/genetics
16.
ACS Macro Lett ; 10(4): 406-411, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-35549235

ABSTRACT

Polymer blends with synergetic performance play an integral part in modern society. The discovery of compatible polymer systems often relies on strong chemical interactions. By contrast, the role of entropy in polymers is often neglected. In this work, we show that entropy effect could control the phase structure and mechanical behaviors of polymer blends. For weakly interacting polymer pairs, the seemingly small mixing entropy favors the formation of nanoscale cocontinuous structures. The abundant nanointerfaces could initiate large plastic deformations by crazing or shear, thus, transforming brittle polymers (elongation < 9%) into superductile materials (elongation ∼ 146%). The resultant polymer blends display high transparency, strength (∼70 MPa), and toughness (∼60 MJ/m3) beyond most engineering plastics. The principle of entropy-driven blends may also be applied in other polymer systems, offering a strategy to develop mechanically robust bulk polymeric materials for emerging applications such as biomedicine and electronics.

17.
Adv Sci (Weinh) ; 7(19): 2001303, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33042749

ABSTRACT

Polymer-based solid-state electrolytes are shown to be highly promising for realizing low-cost, high-capacity, and safe Li batteries. One major challenge for polymer solid-state batteries is the relatively high operating temperature (60-80 °C), which means operating such batteries will require significant ramp up time due to heating. On the other hand, as polymer electrolytes are poor thermal conductors, thermal variation across the polymer electrolyte can lead to nonuniformity in ionic conductivity. This can be highly detrimental to lithium deposition and may result in dendrite formation. Here, a polyethylene oxide-based electrolyte with improved thermal responses is developed by incorporating 2D boron nitride (BN) nanoflakes. The results show that the BN additive also enhances ionic and mechanical properties of the electrolyte. More uniform Li stripping/deposition and reversible cathode reactions are achieved, which in turn enable all-solid-state lithium-sulfur cells with superior performances.

18.
Research (Wash D C) ; 2020: 7286735, 2020.
Article in English | MEDLINE | ID: mdl-32832908

ABSTRACT

The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.

19.
Plant Physiol ; 183(4): 1883-1897, 2020 08.
Article in English | MEDLINE | ID: mdl-32503901

ABSTRACT

Vivipary, wherein seeds germinate prior to dispersal while still associated with the maternal plant, is an adaptation to extreme environments. It is normally inhibited by the establishment of dormancy. The genetic framework of vivipary has been well studied; however, the role of epigenetics in vivipary remains unknown. Here, we report that silencing of METHYLTRANSFERASE1 (SlMET1) promoted precocious seed germination and seedling growth within the tomato (Solanum lycopersicum) epimutant Colorless non-ripening (Cnr) fruits. This was associated with decreases in abscisic acid concentration and levels of mRNA encoding 9-cis-epoxycarotenoid-dioxygenase (SlNCED), which is involved in abscisic acid biosynthesis. Differentially methylated regions were identified in promoters of differentially expressed genes, including SlNCED SlNCED knockdown also induced viviparous seedling growth in Cnr fruits. Strikingly, Cnr ripening reversion suppressed vivipary. Moreover, neither SlMET1/SlNCED-virus-induced gene silencing nor transgenic SlMET1-RNA interference produced vivipary in wild-type tomatoes; the latter affected leaf architecture, arrested flowering, and repressed seed development. Thus, a dual pathway in ripening and SlMET1-mediated epigenetics coordinates the blockage of seed vivipary.


Subject(s)
Fruit/enzymology , Fruit/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/metabolism , Dioxygenases/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/genetics
20.
BMC Plant Biol ; 20(1): 47, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996144

ABSTRACT

BACKGROUND: Shoot branching is an important trait of plants that allows them to adapt to environment changes. Strigolactones (SLs) are newly identified plant hormones that inhibit shoot branching in plants. The SL biosynthesis genes CCD7 (carotenoid cleavage dioxygenase 7) and CCD8 have been found to regulate branching in several herbaceous plants by taking advantage of their loss-of-function mutants. However, the role for CCD7 and CCD8 in shoot branching control in grapevine is still unknown due to the lack of corresponding mutants. RESULTS: Here we employed the CRISPR/Cas9 system to edit the VvCCD7 and VvCCD8 genes in the grape hybrid 41B. The 41B embryogenic cells can easily be transformed and used for regeneration of the corresponding transformed plants. Sequencing analysis revealed that gene editing has been used successfully to target both VvCCD genes in 41B embryogenic cells. After regeneration, six 41B plantlets were identified as transgenic plants carrying the CCD8-sgRNA expression cassette. Among these, four plants showed mutation in the target region and were selected as ccd8 mutants. These ccd8 mutants showed increased shoot branching compared to the corresponding wild-type plants. In addition, no off-target mutation was detected in the tested mutants at predicted off-target sites. CONCLUSIONS: Our results underline the key role of VvCCD8 in the control of grapevine shoot branching.


Subject(s)
Arabidopsis Proteins/genetics , Dioxygenases/genetics , Plant Shoots/genetics , Vitis/genetics , CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques , Genes, Plant , Plant Shoots/growth & development , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...