Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1379488, 2024.
Article in English | MEDLINE | ID: mdl-38680914

ABSTRACT

Background: The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods: We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results: We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion: Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.

2.
Microbiol Spectr ; 10(1): e0232421, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019691

ABSTRACT

Plant secondary metabolites (PSMs) can affect the structures and functions of soil microbiomes. However, the core bacteria associated with PSMs, and their corresponding functions have not been explored extensively. In this study, soil physicochemical properties, tea saponin (TS) contents, microbial community compositions, and microbial community functions of different-age Camellia oleifera plantation soils from representative regions were analyzed. We evaluated the effects of plantation age increase on PSM accumulation, and the subsequent consequences on the structures and functions of soil microbiomes. Plantation ages increase positively correlated with accumulated TS contents, negative effects on soil physicochemical properties, and soil microbiome structures and functions. Clearly, the core functions of soil microbiomes transitioned to those associated with PSM metabolisms, while microbial pathways involved in cellulose degradation were inhibited. Our study systematically explored the influences of PSMs on soil microbiomes via the investigation of key bacterial populations and their functional pathways. With the increase in planting years, increased TS content simplified soil microbiome diversity, inhibited the degradation of organic matter, and enriched the genes related to the degradation of TS. These findings significantly advance our understanding on PSMs-microbiome interactions and could provide fundamental and important data for sustainable management of Camellia plantations. IMPORTANCE Plant secondary metabolites (PSMs) contained in plant litter will be released into soil with the decomposition process, which will affect the diversity and function of soil microbiomes. The response of soil microbiomes to PSMs in terms of diversity and function can provide an important theoretical basis for plantations to put forward rational soil ecological management measures. The effects of planting years on PSM content, soil physicochemical properties, microbial diversity, and function, as well as the interaction between each index in Camellia oleifera plantation soil are still unclear. We found that, with planting years increased, the accumulation of tea saponin (TS) led to drastic changes in the diversity and function of soil microbiomes, which hindered the decomposition of organic matter and enriched many genes related to PSM degradation. We first found that soil bacteria, represented by Acinetobacter, were significantly associated with TS degradation. Our results provide important data for proposing rational soil management measures for pure forest plantations.


Subject(s)
Bacteria/isolation & purification , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Microbiota , Saponins/analysis , Bacteria/classification , Bacteria/genetics , Camellia sinensis/growth & development , Saponins/metabolism , Secondary Metabolism , Soil/chemistry , Soil Microbiology
3.
Ecol Evol ; 11(14): 9318-9331, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306624

ABSTRACT

Lacking systematic evaluations in soil quality and microbial community recovery after different amendments addition limits optimization of amendments combination in coal mine soils. We performed a short-term incubation experiment with a varying temperature over 12 weeks to assess the effects of three amendments (biochar: C; nitrogen fertilizer at three levels: N-N1~N3; microbial agent at two levels: M-M1~M2) based on C/N ratio (regulated by biochar and N level: 35:1, 25:1, 12.5:1) on mine soil properties and microbial community in the Qilian Mountains, China. Over the incubation period, soil pH and MBC/MBN were significantly lower than unamended treatment in N addition and C + M + N treatments, respectively. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly in all amended treatments (p < .001). Higher AP, AK, MBC, MBN, and lower MBC/MBN were observed in N2-treated soil (corresponding to C/N ratio of 25:1). Meanwhile, N2-treated soil significantly increased species richness and diversity of soil bacterial community (p < .05). Principal coordinate analysis further showed that soil bacterial community compositions were significantly separated by N level. C-M-N treatments significantly increased the relative abundance (>1%) of the bacterial phyla Bacteroidetes and Firmicutes, and decreased the relative abundance of fungal phyla Chytridiomycota (p < .05). Redundancy analysis illustrated the importance of soil nutrients in explaining variability in bacterial community composition (74.73%) than fungal composition (35.0%). Our results indicated that N addition based on biochar and M can improve soil quality by neutralizing soil pH and increasing soil nutrient contents in short-term, and the appropriate C/N ratio (25:1) can better promote microbial mass, richness, and diversity of soil bacterial community. Our study provided a new insight for achieving restoration of damaged habitats by changing microbial structure, diversity, and mass by regulating C/N ratio of amendments.

SELECTION OF CITATIONS
SEARCH DETAIL
...