Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Br J Cancer ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796599

ABSTRACT

BACKGROUND: Identifying the target of natural killer (NK) cells in colorectal cancer (CRC) is critical for optimising the clinical use of NK cell-mediated immunotherapy. Mismatch repair deficiency (dMMR) is associated with high immune cell infiltration and MHC Class I defects. Whether dMMR CRC responses to NK cell therapy remains unclear. METHODS: MLH1, DR4, and DR5 knockout cell lines were established using CRISPR-Cas9 system. NK92-MI or NK cell isolated from BABL/C mice were used as effector cells against tumour cells. Inflammatory cytokines secretion by CRC cells was assessed via cytokine analysis. NK-cell-deficient/proficient animal models were used to validate the NK cell sensitivity. RESULTS: We observed that dMMR CRC cells were more sensitive to NK cell-mediated cytotoxicity than were mismatch-repair-proficient (pMMR) CRC cells. In dMMR CRC, Death receptor (DR)4/5 was upregulated and mediated sensitivity to NK cell-mediated cytotoxicity. DR4/5-mediated secretion of interleukin -12 sustained NK cell viability in dMMR CRC. NK cell depletion induced dMMR CRC tumour growth, and NK cell transfer inhibited lung metastasis of dMMR CRC with DR4/5 expression in vivo. TP53 upregulated DR4/DR5 expression in dMMR CRC. CONCLUSIONS: dMMR associated with increased sensitivity to NK cell-mediated cytotoxicity in CRC. DR4/DR5 sensitise dMMR CRC to NK cell-mediated cytotoxicity.

2.
Biomark Res ; 12(1): 33, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481347

ABSTRACT

BACKGROUND: Helicobacter pylori (H pylori) infection is the primary cause of gastric cancer (GC). The role of Disabled-2 (DAB2) in GC remains largely unclear. This study aimed to investigate the role of DAB2 in H pylori-mediated gastric tumorigenesis. METHODS: We screened various datasets of GC to analyze DAB2 expression and cell signaling pathways. DAB2 expression was assessed in human GC tissue microarrays. H pylori infection in vivo and in vitro models were further explored. Immunostaining, immunofluorescence, chromatin immunoprecipitation, co-immunoprecipitation, Western blot, quantitative polymerase chain reaction, and luciferase reporter assays were performed in the current study. RESULTS: The bioinformatic analysis verified that DAB2 was 1 of the 8 genes contributed to tumorigenesis and associated with poor prognosis in GC. The median overall survival and disease-free survival rates in DAB2high group were significantly less than those in DAB2low group. These findings demonstrated that H pylori transcriptionally activated DAB2 expression via signal transducer and activator of transcription 3 (STAT3)-dependent pathway. By bioinformatics analysis and knockdown or overexpression of DAB2, we found that DAB2 upregulated Yes-associated protein 1 (YAP1) transcriptional activity. Mechanistically, DAB2 served as a scaffold protein for integrin beta 3 (ITGB3) and SRC proto-oncogene non-receptor tyrosine kinase (SRC), facilitated the phosphorylation of SRC, promoted the small GTPase ras homolog family member A (RHOA) activation and phosphorylation of YAP1, and ultimately enhanced the YAP1 transcriptional activity. CONCLUSIONS: Altogether, these findings indicated that DAB2 is a key mediator in STAT3-regulated translation of YAP1 and plays crucial roles in H pylori-mediated GC development. DAB2 might serve as a novel therapeutic target for GC.

3.
Ultrasound Q ; 40(2): 98-103, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38372708

ABSTRACT

ABSTRACT: The objective of this academic research is to assess the efficacy of conventional endorectal ultrasound (ERUS), ultrasonic shear wave elastography (SWE), and magnetic resonance imaging (MRI) techniques in evaluating the impact of neoadjuvant therapy (nCRT). Forty-five patients with advanced low rectal cancer (T ≥ 3) were included. Before and after nCRT, ERUS, SWE, and MRI evaluations were conducted. The T staging of ultrasound (uT) and MRI (mT) were evaluated and compared with the pathological T staging (ypT). The accuracy of the 2 diagnostic methods for T staging, and T downstaging was evaluated. The ultrasound elasticity difference and relative elasticity before and after treatment and pathological T downstaging were compared, and its cutoff value and the area under the curve were assessed. In terms of T staging accuracy after chemoradiotherapy, the values for ERUS, ERUS combined with SWE, and MRI were 64.4%, 71.1%, and 62.2%, respectively. No significant difference was observed among these groups ( P > 0.05). The accuracy of uT downstaging was 84.4%, and that of mT downstaging was 88.9%. The receiver operating characteristic curve of uLD and elastic differences and relative elasticity of T downstaging after treatment were 0.754, 0.817, and 0.886, respectively (all P < 0.05). Both ERUS and MRI can evaluate ypT downstaging. The indicators for evaluating T downstaging are uLD, elasticity difference, and relative elasticity, providing more reference for clinical assessment of nCRT efficacy.


Subject(s)
Elasticity Imaging Techniques , Endosonography , Magnetic Resonance Imaging , Neoadjuvant Therapy , Neoplasm Staging , Rectal Neoplasms , Humans , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Elasticity Imaging Techniques/methods , Neoadjuvant Therapy/methods , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Endosonography/methods , Aged , Reproducibility of Results , Adult , Rectum/diagnostic imaging , Treatment Outcome
4.
Chem Biol Drug Des ; 103(1): e14423, 2024 01.
Article in English | MEDLINE | ID: mdl-38230773

ABSTRACT

Astragaloside IV (AS-IV) has exhibited pivotal anti-cancer efficacy in multiple types of cancer, including colorectal cancer (CRC). Meanwhile, circular RNA (circRNA) circ_0001615 has been reported to be involved in the malignant development of CRC. Herein, this study is expected to figure out the interaction between circ_0001615 and AS-IV on CRC progression. The 50% inhibition concentration (IC50), proliferation, apoptosis, and migration were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and wound healing assays. The expression of related proteins was examined by western blot. Circ_0001615, microRNA-873-5p (miR-873-5p), and LIM and SH3 protein 1 (LASP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The binding between miR-873-5p and circ_0001615, or LASP1, was predicted by Starbase, followed by verification by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological role of circ_0001615 and AS-IV on CRC tumor growth was detected by the xenograft tumor model in vivo. According to the IC50 of AS-IV in CRC cells, the 100 ng/mL AS-IV treatment for 24 h was chosen for the following research: Our data confirmed that AS-IV is a beneficial anti-cancer agent in CRC cells. Furthermore, circ_0001615 and LASP1 expression were increased, and miR-873-5p was decreased in CRC patients and cell lines, whereas their expression exhibited an opposite trend in AS-IV-treated cells. Functionally, applying AS-IV might act as a beneficial anti-cancer effect by downregulating circ_0001615 in CRC cells in vitro. Mechanically, circ_0001615 serves as a sponge for miR-873-5p to affect LASP1 expression. In addition, AS-IV inhibited CRC cell growth in vivo by modulating circ_0001615. Overall, AS-IV could mitigate CRC development, at least in part, through the circ_0001615/miR-873-5p/LASP1 axis. These findings support a theoretical basis for an in-depth study of the function of AS-IV and the clinical treatment of CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Saponins , Triterpenes , Humans , Animals , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Disease Models, Animal , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , MicroRNAs/genetics , Cell Proliferation , Cytoskeletal Proteins , Adaptor Proteins, Signal Transducing , LIM Domain Proteins
5.
Anal Chem ; 96(5): 1906-1912, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38251936

ABSTRACT

Salivary d-alanine (d-Ala) and d-proline (d-Pro) are of concern for their potential in the noninvasive diagnosis of gastric cancer (GC). Most reports have succeeded in determining the total concentration of d-Ala and d-Pro. However, for personalized diagnosis and better elucidation of the underlying specific correlation of d-Ala (or d-Pro) with GC, it is desirable to determine the specific concentration of d-Ala or d-Pro. Herein, we propose an enantiomer-specific tandem assay of d-Ala based on the colorimetric reaction between 2,4-dinitrophenylhydrazine and pyruvic acid generated from the deamination of d-Ala catalyzed by d-amino acid oxidase, which is easily distinguished from l-form amino acids, d-Pro, and many other species. A linear concentration range is established from 20 to 400 µmol/L with a limit of detection of 1.01 µmol/L. Real saliva sample tests reveal that the levels of d-Ala in GC cases are remarkably higher than those in healthy individuals, which offers a simple and low-cost strategy for GC diagnosis. Simultaneously, the total concentrations of d-Ala and d-Pro in saliva are determined. Hence, the concentration of d-Pro and the proportion of d-Ala could be calculated, which further provides more molecule- and individual-specific information. This research may offer a convenient method for noninvasive diagnosis of GC and pave a new route to explore the potentials of rare d-form amino acids in disease diagnosis and treatment.


Subject(s)
Alanine , Stomach Neoplasms , Humans , Alanine/chemistry , Stomach Neoplasms/diagnosis , Colorimetry , Amino Acids , Proline
6.
Front Oncol ; 13: 1238467, 2023.
Article in English | MEDLINE | ID: mdl-37954083

ABSTRACT

Background: Situs inversus totalis (SIT) is an uncommon disorder characterized by mirror-image anatomy, which can present unique challenges and potential vascular anomalies in surgical interventions, particularly in gastric cancer patients. Aims: We aim to delineate a rare case of gastric adenocarcinoma in a SIT patient and conduct a thorough review of the existing literature concerning surgical strategies, vascular anomalies, and outcomes observed across varied geographic locales and technological approaches. Methods: A thorough examination of a case involving a 39-year-old male SIT patient who underwent a successful distal gastrectomy with D2 lymph node dissection is presented alongside an expansive literature review. The review encompasses 47 articles, collating data on surgical approaches and vascular anomalies across 49 patients diagnosed with SIT and gastric cancer. Results: The patient underwent curative distal gastrectomy and Billroth II with Braun anastomosis within 95 minutes, incurring minimal intraoperative blood loss (100ml). Postoperative pathology confirmed moderately to poorly differentiated gastric adenocarcinoma (pT3N0M0), with no signs of recurrence or metastasis after 6 months of S-1 adjuvant chemotherapy. The literature review revealed vascular anomalies in approximately 20% of reported cases, accentuating its surgical significance. Noteworthy variations in surgical strategies, operative times, blood loss, and complications across different surgical modalities were observed, providing a comprehensive view into the practical management of such cases. Conclusion: Despite the inherent challenges associated with SIT, various surgical techniques can be successfully applied with meticulous preoperative planning and understanding vascular anomalies. This compilation of diverse surgical experiences across numerous documented cases seeks to provide a consolidated resource for refining surgical strategies and enhancing postoperative outcomes for gastric cancer patients with SIT, underscoring the imperativeness of further research in this niche domain.

7.
J Biochem Mol Toxicol ; 37(12): e23509, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37670439

ABSTRACT

To explore the function and regulation mechanism of circ_0071589 in colorectal cancer (CRC). The expression levels of circ_0071589, microRNA-296-5p (miR-296-5p), and Engrailed-2 (EN2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to check the protein levels of EN2 and apoptosis-related proteins. Cell colony formation and 5-Ethynyl-29-deoxyuridine (EdU) assay were used to exhibit cell proliferation. Cell apoptosis was shown by flow cytometry. Tube formation assay manifested the angiogenesis ability of CRC cells. Transwell assay demonstrated cell migration and invasion. The interaction between miR-296-5p and circ_0071589 or EN2 was identified by dual-luciferase reporter assay. The effect of circ_0071589 on tumor formation was demonstrated by in vivo tumor formation experiments. Immunohistochemical (IHC) assay was used to detect the positive cell rate of Ki67 in tumor tissue. Circ_0071589 was upregulated in CRC tissue and cells. Circ_0071589 knockdown repressed CRC cells proliferation, angiogenesis, migration, invasion, and promoted cell apoptosis. MiR-296-5p was downregulated in CRC tissue and cells. And miR-296-5p inhibitor could reverse the malignant phenotypes and angiogenesis inhibition of CRC cells caused by circ_0071589 knockdown. Additionally, miR-296-5p decreased CRC cell colony formation, EdU-positive cells, angiogenesis, and increased cell apoptosis through reducing the expression level of EN2. Finally, circ_0071589 silencing inhibited tumor formation in vivo. Circ_0071589 upregulated EN2 expression through sponging miR-296-5p, thereby promoting the malignant phenotype and angiogenesis of CRC cells, which provided a new target for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , Angiogenesis , Cell Proliferation , Apoptosis , Colorectal Neoplasms/genetics , MicroRNAs/genetics
8.
Anal Chem ; 95(35): 13029-13035, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37611167

ABSTRACT

The unusual d-amino acids (d-AAs), as the counter enantiomer of usual l-amino acids (l-AAs), have evoked increasing attention because of their potential relevance with diseases. Accordingly, it is essential to establish sensitive and selective detection methods for d-AAs without the interferences from l-AAs. The surface-enhanced Raman scattering (SERS) technique is efficacious for the detection of molecules but routinely ineffective in enantiomeric differentiation. d-Proline (d-Pro) and d-alanine (d-Ala) are regarded as biomarkers of gastric cancer. Herein, Raman-active boronate modified SERS chips are constructed to develop a d-amino acid oxidase (DAAO)-mediated cascade reaction-based SERS enantioselective assay for d-Pro and d-Ala. The principle is that DAAO selectively catalyzes the deamination of d-Pro and d-Ala, and the produced H2O2 oxidizes boronate to present a new SERS peak at 883 cm-1 for quantitative analysis in a ratiometric way. A linear range from 20 to 400 µmol/L and a limit of detection down to 14.8 µmol/L are reached. In addition, interferences from l-AAs and many other possible species coexisting in biofluids with the detection of d-Pro and d-Ala are ignorable. Enzyme-mediated cascade reaction-based SERS chips are further utilized for saliva sample analysis, and the total levels of d-Pro and d-Ala in salivary samples from gastric cancer patients are much higher than those of healthy persons. This work provides a solution for SERS enantioselective analysis and noninvasive screening chiral biomolecules for disease diagnosis.


Subject(s)
Antifibrinolytic Agents , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Amino Acids , Hydrogen Peroxide , Saliva , Spectrum Analysis, Raman , Stereoisomerism , Alanine , Proline
9.
Clin Immunol ; 247: 109238, 2023 02.
Article in English | MEDLINE | ID: mdl-36690192

ABSTRACT

The aims of this study were to enhance the antitumour immunity in Epstein-Barr virus-associated gastric cancer (EBVaGC). We performed RNA-seq analysis to compare the differential expression genes between EBVaGC and EBV-negative gastric cancer (EBVnGC) patients. The expression levels of CD68, CD163 and CD47 were analyzed by immunohistochemistry. Different subsets of macrophages were investigated by a coincubation model. The effects of CD47 blockade were also detected. The expression levels of CD68, CD163 and CD47 were significantly higher in EBVaGC, and were associated with poor prognoses. Macrophages coincubated with EBV+ AGS cells tended to be immunosuppressed, which could be reversed by CD47 deficiency or blocking CD47. EBV resulted in cGAS-STING pathway activation, which stimulated CD47 expression and inhibited macrophage phagocytosis. Anti-CD47 therapy activated cGAS-STING signaling, which was responsible for production of IFN-ß, resulting in activation of antitumour immunity. Our results provide a promising new strategy for CD47-targeted immunotherapy in EBVaGC.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Stomach Neoplasms/therapy , Stomach Neoplasms/metabolism , Herpesvirus 4, Human , Epstein-Barr Virus Infections/genetics , Immunohistochemistry , Immunotherapy , CD47 Antigen/genetics
10.
Gut Liver ; 17(2): 267-279, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36148577

ABSTRACT

Background/Aims: We aimed to investigate the role and working mechanism of Homo sapiens circular RNA_0003602 (hsa_circ_0003602) in colorectal cancer (CRC) development. Methods: The expression of circ_0003602, miR-149-5p, and solute carrier family 38 member 1 (SLC38A1) was detected by quantitative real-time polymerase chain reaction. RNase R assays were conducted to determine the characteristics of circ_0003602. CCK-8 assays, flow cytometry analysis, transwell invasion assays, wound healing assays and tube formation assays were employed to evaluate cell viability, apoptosis, invasion, migration, and angiogenesis. All protein levels were examined by Western blot or immunohistochemistry assay. The glutamine metabolism was monitored by corresponding glutamine, α-ketoglutarate and glutamate assay kits. Dual-luciferase reporter assay was utilized to confirm the targeted combination between miR-149-5p and circ_0003602 or SLC38A1. A xenograft tumor model was established to analyze the role of circ_0003602 in CRC tumor growth in vivo. Results: Circ_0003602 was upregulated in CRC tissues and cell lines. Circ_0003602 silencing suppressed CRC cell viability, migration, invasion, angiogenesis, and glutaminolysis; induced cell apoptosis in vitro; and blocked tumor growth in vivo. Moreover, circ_0003602 directly interacted with miR-149-5p to negatively regulate its expression, and circ_0003602 knockdown suppressed the malignant behaviors of CRC cells largely by upregulating miR-149-5p. MiR-149-5p directly bound to the 3' untranslated region of SLC38A1 to induce its degradation, and miR-149-5p overexpression reduced the malignant potential of CRC cells largely by downregulating SLC38A1. Circ_0003602 positively regulated SLC38A1 expression by sponging miR-149-5p in CRC cells. Conclusions: Circ_0003602 knockdown impedes CRC development by targeting the miR-149-5p/SLC38A1 axis, which provides a novel theoretical basis and new insights for CRC treatment.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , Animals , Glutamine , Disease Models, Animal , Colorectal Neoplasms/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Amino Acid Transport System A
11.
Pharm Biol ; 61(1): 111-124, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36562308

ABSTRACT

CONTEXT: Slow transit constipation (STC), the most common type of constipation, seriously affects the life of patients. Zhizhu decoction (ZZD), a traditional Chinese medicine compound, has is effective against functional constipation, but the mechanism is still unclear. OBJECTIVE: This research explores the mechanism of ZZD on STC from the perspective of metabolomics and gut microbiota. MATERIALS AND METHODS: Fifty-four C57BL/6 mice were randomly divided into six groups (n = 9): control (control); STC (model); positive control (positive); low-dose (5 g/kg; L-ZZD), medium-dose (10 g/kg; M-ZZD), and high-dose (20 g/kg; H-ZZD) ZZD treatment. Following treatment of mice with ZZD for two weeks, the changes in intestinal motility, colon histology, intestinal neurotransmitters, and aryl hydrocarbon receptor (AHR) pathway determined the effects of ZZD on the pathophysiology of STC. LC-MS targeting serum metabolomics was used to analyze the regulation of ZZD on neurotransmitters, and 16S rRNA high-throughput sequencing was used to detect the regulation of the gut microbiome. RESULTS: ZZD had the highest content of naringin (6348.1 mg/L), and could significantly increase the 24 h defecations (1.10- to 1.42-fold), fecal moisture (1.14-fold) and intestinal transport rate (1.28-fold) of STC mice, increased the thickness of the mucosal and muscular tissue (1.18- to 2.16-fold) and regulated the neurotransmitters in the colon of STC mice. Moreover, ZZD significantly activated the AHR signaling pathway, and also affected the composition of gut microbiota in STC mice. DISCUSSION AND CONCLUSIONS: The beneficial effect and the possible mechanism of ZZD on STC could provide a theoretical basis for the broader clinical application of ZZD.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Receptors, Aryl Hydrocarbon , RNA, Ribosomal, 16S , Gastrointestinal Transit/physiology , Mice, Inbred C57BL , Constipation/metabolism
12.
Chin J Integr Med ; 29(9): 809-817, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36044116

ABSTRACT

OBJECTIVE: To explore the possible effects and mechanism of Zhizhu Decoction (ZZD) on the pathophysiology of slow transit constipation (STC). METHODS: A total of 54 C57BL/6 mice was randomly divided into the following 6 groups by a random number table, including control, STC model (model), positive control, and low-, medium- and high-doses ZZD treatment groups (5, 10, 20 g/kg, namely L, M-, and H-ZZD, respectively), 9 mice in each group. Following 2-week treatment, intestinal transport rate (ITR) and fecal water content were determined, and blood and colon tissue samples were collected. Hematoxylin-eosin and periodic acid-Schiff staining were performed to evaluate the morphology of colon tissues and calculate the number of goblet cells. To determine intestinal permeability, serum levels of lipopolysaccharide (LPS), low-density lipoprotein (LDL) and mannose were measured using enzyme-linked immunosorbent assay (ELISA). Western blot analysis was carried out to detect the expression levels of intestinal tight junction proteins zona-occludens-1 (ZO-1), claudin-1, occludin and recombinant mucin 2 (MUC2). The mRNA expression levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-4, IL-10 and IL-22 were determined using reverse transcription-quantitative reverse transcription reaction. Colon indexes of oxidative stress were measured by ELISA, and protein expression levels of colon silent information regulator 1/forkhead box O transcription factor 1 (SIRT1/FoxO1) antioxidant signaling pathway were detected by Western blot. RESULTS: Compared with the model group, ITR and fecal moisture were significantly enhanced in STC mice in the M-ZZD and H-ZZD groups (P<0.01). Additionally, ZZD treatment notably increased the thickness of mucosal and muscular tissue, elevated the number of goblet cells in the colon of STC mice, reduced the secretion levels of LPS, LDL and mannose, and upregulated ZO-1, claudin-1, occludin and MUC2 expressions in the colon in a dose-dependent manner, compared with the model group (P<0.05 or P<0.01). In addition, ZZD significantly attenuated intestinal inflammation and oxidative stress and activated the SIRT1/FoxO1 signaling pathway (P<0.05 or P<0.01). CONCLUSION: ZZD exhibited beneficial effects on the intestinal system of STC mice and alleviated intestinal inflammation and oxidative stress via activating SIRT1/FoxO1 antioxidant signaling pathway in the colon.


Subject(s)
Antioxidants , Sirtuin 1 , Mice , Animals , Sirtuin 1/genetics , Occludin , Lipopolysaccharides , Claudin-1 , Mannose , Mice, Inbred C57BL , Constipation/drug therapy , Inflammation , Signal Transduction
13.
World J Gastroenterol ; 28(42): 6056-6067, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36405388

ABSTRACT

BACKGROUND: Chylous ascites (CA) presents a challenge as a relatively common postoperative complication in gastric cancer (GC). Primary conservative therapy involved total parenteral nutrition, continuous low-pressure drainage, somatostatin, and a low-fat diet. Drainage tube (DT) clamping has been presented as a potential alternative conservative treatment for GC patients with CA. AIM: To propose novel conservative treatment strategies for CA following GC surgery. METHODS: The data of patients with CA after GC surgery performed at the Fudan University Shanghai Cancer Center between 2006 and 2021 were evaluated retrospectively. RESULTS: 53 patients underwent surgery for GC and exhibited postoperative CA during the study period. Postoperative hospitalization and time of DT removal showed a significant positive association (R 2 = 0.979, P < 0.001). We further observed that delayed DT removal significantly extended the total and postoperative hospitalization, antibiotic usage duration, and hospitalization cost (postoperative hospitalization: 25.8 d vs 15.5 d, P < 0.001; total hospitalization: 33.2 d vs 24.7 d, P < 0.01; antibiotic usage duration: 10.8 d vs 6.2 d, P < 0.01; hospitalization cost: ¥9.2 × 104 vs ¥6.5 × 104, P < 0.01). Multivariate analysis demonstrated that postoperative infection and antibiotic usage were independent factors for delayed DT removal. Furthermore, DT removal times were shorter in seven patients who underwent DT clamping (clamped DT vs normal group, 11.8 d vs 13.6 d, P = 0.047; clamped DT vs delayed group, 13.6 d vs 27.4 d, P < 0.001). In addition, our results indicated that removal of the DT may be possible after three consecutive days of drainage volumes less than 300 mL in GC patients with CA. CONCLUSION: Infection and antibiotic usage were vital independent factors that influenced delayed DT removal in patients with CA. Appropriate standards for DT removal can significantly reduce the duration of hospitalization. Furthermore, DT clamping might be a recommended option for conservative treatment of postoperative CA.


Subject(s)
Chylous Ascites , Stomach Neoplasms , Humans , Chylous Ascites/etiology , Chylous Ascites/therapy , Stomach Neoplasms/surgery , Stomach Neoplasms/complications , Conservative Treatment , Retrospective Studies , China , Postoperative Complications/therapy , Postoperative Complications/etiology , Anti-Bacterial Agents/therapeutic use
14.
Nano Lett ; 22(14): 5635-5640, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35838660

ABSTRACT

Here, we use low-temperature scanning tunneling microscopy and spectroscopy to study the polar surfaces of PdCoO2. On the CoO2-terminated polar surface, we detect the quasiparticle interference pattern originating from the Rashba-like spin-split surface states. On the well-ordered Pd-terminated polar surface, we observe a regular lattice that has a larger lattice constant than the atomic lattice of PdCoO2. In comparison with the shape of the hexagonal Fermi surface on the Pd-terminated surface, we identify this regular lattice as a fully two-dimensional incommensurate charge modulation that is driven by the Fermi surface nesting. More interestingly, we also find the moiré pattern induced by the interference between the two-dimensional incommensurate charge modulation in the Pd layer and its atomic lattice. Our results not only show a new charge modulation on the Pd surface of PdCoO2 but also pave the way for fully understanding the novel electronic properties of this material.

15.
Front Pharmacol ; 13: 804723, 2022.
Article in English | MEDLINE | ID: mdl-35496291

ABSTRACT

Background: Slow transit constipation (STC) is becoming a common and frequently occurring disease in today's society, and it is necessary to explore the safe and effective treatment of STC. Method: Our study aimed to investigate whether the laxative effect of Maren pills (MRW) is associated with the regulation of intestinal microflora and intestinal metabolism in the colon. Loperamide hydrochloride-induced STC rats received MRW intragastrically for two consecutive weeks to evaluate the laxative effect of MRW involving the regulation of intestinal microflora, intestinal metabolism, and 5-HT signaling pathway. Intestinal microflora was detected by 16s rDNA sequencing, intestinal metabolism of short-chain fatty acids (SCFAs) was detected by HPLC, and the 5-HT signaling pathway was detected by WB, ELISA, immunofluorescence, and immunohistochemical analysis. Results: Our results revealed that the treatments with MRW increased not only the body weight, 24-h fecal number, 24-h wet fecal weight, 24-h dry fecal weight, fecal water content, and the intestinal propulsion rate but also the colonic goblet cell number, colonic Muc-2 protein expression, and colonic mucus layer thickness in the STC model rats. Moreover, MRW activated the 5-HT pathway by increasing the levels of 5-HT, 5-HIAA, 5-HT4R, CFTR, cAMP, and PKA in the colon tissue of STC rats. The 16S rDNA sequencing results showed that MRW improved the colonic microflora structure in colonic contents of STC rats, mainly by increasing Lactobacillus and decreasing Prevotella. Finally, we found that MRW regulated the SCFA metabolism in the colonic contents of the STC rats, mainly by increasing the contents of acetic acid, propionic acid, and butyric acid; the relative abundance of Lactobacillus was positively correlated with either contents of acetic acid, propionic acid, and butyric acid, and the relative abundance of Clostridium was negatively correlated. Conclusion: Our study further showed that MRW could improve constipation in STC rats, and the mechanism may be by regulating the intestinal microflora structure and improving the metabolism of SCFAs.

16.
Nat Commun ; 13(1): 2156, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35444181

ABSTRACT

Although the single-impurity Kondo physics has already been well understood, the understanding of the Kondo lattice where a dense array of local moments couples to the conduction electrons is still far from complete. The ability of creating and tuning the Kondo lattice in non-f-electron systems will be great helpful for further understanding the Kondo lattice behavior. Here we show that the Pb intercalation in the charge-density-wave-driven narrow-electronic-band system 1T-TaS2 induces a transition from the insulating gap to a sharp Kondo resonance in the scanning tunneling microscopy measurements. It results from the Kondo screening of the localized moments in the 13-site Star-of-David clusters of 1T-TaS2. As increasing the Pb concentration, the narrow electronic band derived from the localized electrons shifts away from the Fermi level and the Kondo resonance peak is gradually suppressed. Our results pave the way for creating and tuning many-body electronic states in layered narrow-electronic-band materials.

17.
Eur J Gastroenterol Hepatol ; 34(6): 630-639, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35412486

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease that affects the colon. It has been discovered that long non-coding RNA activated by DNA damage (NORAD) is upregulated in UC patient-derived serums, but its functional mechanism in UC has not been disclosed. METHODS: Relative levels of NORAD in colonic mucosal tissues and TNF-α-stimulated human normal colonic mucosal cells (FHCs) were detected. Functional experiments were executed to evaluate the effects of NORAD silencing on TNF-α-induced FHC proliferation, apoptosis, inflammation, and oxidative stress. The molecular mechanism related to NORAD was predicted by starBase and confirmed by dual-luciferase reporter and RIP assays. RESULTS: Our data exhibited higher levels of NORAD in UC patient-derived colonic mucosal tissues and TNF-α-stimulated FHCs. Functional experiments presented that NORAD inhibition impaired TNF-α-induced FHC apoptosis, inflammation, and oxidative stress. NORAD acted as a miR-552-3p sponge, and miR-552-3p silencing weakened NORAD inhibition-mediated effects on TNF-α-induced FHC apoptosis, inflammation, and oxidative stress. Myeloid differentiation primary response gene 88 (MYD88) was verified as a miR-552-3p target, and MYD88 overexpression whittled miR-552-3p mimic-mediated inhibition on TNF-α-induced FHC apoptosis, inflammation, and oxidative stress. Notably, TNF-α-induced NORAD regulated the nuclear factor-κappaB (NF-κB) signaling via the miR-552-3p/MYD88 axis. CONCLUSION: NORAD participates in TNF-α-induced FHC apoptosis, inflammation, and oxidative stress via the NF-κB signaling via the miR-552-3p/MYD88 axis, offering new insights into the pathogenesis of UC.


Subject(s)
Colitis, Ulcerative , MicroRNAs , RNA, Long Noncoding , Apoptosis , Colitis, Ulcerative/genetics , Humans , Inflammation/genetics , Inflammation/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Oxidative Stress , RNA, Long Noncoding/genetics , Tumor Necrosis Factor-alpha/pharmacology
18.
Free Radic Biol Med ; 181: 288-299, 2022 03.
Article in English | MEDLINE | ID: mdl-35182729

ABSTRACT

BACKGROUND: Ferroptosis, a unique form of nonapoptotic-regulated cell death caused by overwhelming lipid peroxidation, represents an emerging tumor suppression mechanism. Growing evidence has demonstrated that cell metabolism plays an important role in the regulation of ferroptosis. Specifically, the association between methionine metabolism and ferroptosis remains undefined. METHODS: We performed in vitro and in vivo experiments to evaluate the influence of methionine metabolism on ferroptosis sensitivity. Pharmacological and genetic blockade of the methionine cycle was utilized and relevant molecular analyses were performed. RESULTS: We identified MAT2A as a driver of ferroptosis resistance. Mechanistically, MAT2A mediates the production of S-adenosylmethionine (SAM), which upregulates ACSL3 by increasing the trimethylation of lysine-4 on histone H3 (H3K4me3) at the promoter area, resulting in ferroptosis resistance. CONCLUSIONS: Collectively, these results established a link between methionine cycle activity and ferroptosis vulnerability in gastric cancer.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Methionine Adenosyltransferase , Stomach Neoplasms , Coenzyme A Ligases/genetics , Ferroptosis/genetics , Humans , Methionine Adenosyltransferase/genetics , Promoter Regions, Genetic , S-Adenosylmethionine/metabolism , Stomach Neoplasms/genetics
19.
Adv Mater ; 33(42): e2102813, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34477250

ABSTRACT

Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3 Sb5 single crystal with V kagome lattice are investigated. By using high-resolution scanning tunneling microscopy/spectroscopy (STM/STS), two CDW orders in CsV3 Sb5 are observed which correspond to 4a × 1a and 2a × 2a superlattices. By applying pressure, the superconducting transition temperature Tc is significantly enhanced and reaches a maximum value of 8.2 K at around 1 GPa. Accordingly, CDW state is gradually declined as increasing the pressure, which indicates the competing interplay between CDW and superconducting state in this material. The broad superconducting transitions around 0.4-0.8 GPa can be related to the strong competition relation among two CDW states and superconductivity. These results demonstrate that CsV3 Sb5 is a new platform for exploring the interplay between superconductivity and CDW in topological kagome metals.

20.
Phys Rev Lett ; 126(25): 256402, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34241511

ABSTRACT

Here we use low-temperature scanning tunneling microscopy and spectroscopy to reveal the roles of the narrow electronic band in two 1T-TaS_{2}-related materials (bulk 1T-TaS_{2} and 4H_{b}-TaS_{2}). 4H_{b}-TaS_{2} is a superconducting compound with alternating 1T-TaS_{2} and 1H-TaS_{2} layers, where the 1H-TaS_{2} layer has a weak charge density wave (CDW) pattern and reduces the CDW coupling between the adjacent 1T-TaS_{2} layers. In the 1T-TaS_{2} layer of 4H_{b}-TaS_{2}, we observe a narrow electronic band located near the Fermi level, and its spatial distribution is consistent with the tight-binding calculations for two-dimensional 1T-TaS_{2} layers. The weak electronic hybridization between the 1T-TaS_{2} and 1H-TaS_{2} layers in 4H_{b}-TaS_{2} shifts the narrow electronic band to be slightly above the Fermi level, which suppresses the electronic correlation-induced band splitting. In contrast, in bulk 1T-TaS_{2}, there is an interlayer CDW coupling-induced insulating gap. In comparison with the spatial distributions of the electronic states in bulk 1T-TaS_{2} and 4H_{b}-TaS_{2}, the insulating gap in bulk 1T-TaS_{2} results from the formation of a bonding band and an antibonding band due to the overlap of the narrow electronic bands in the dimerized 1T-TaS_{2} layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...