Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Pathol Oncol Res ; 29: 1611343, 2023.
Article in English | MEDLINE | ID: mdl-38089646

ABSTRACT

Squamous differentiation of prostate cancer, which accounts for less than 1% of all cases, is typically associated with androgen deprivation treatment (ADT) or radiotherapy. This entity is aggressive and exhibits poor prognosis due to limited response to traditional treatment. However, the underlying molecular mechanisms and etiology are not fully understood. Previous findings suggest that squamous cell differentiation may potentially arise from prostate adenocarcinoma (AC), but further validation is required to confirm this hypothesis. This paper presents a case of advanced prostate cancer with a combined histologic pattern, including keratinizing SCC and AC. The study utilized whole-exome sequencing (WES) data to analyze both subtypes and identified a significant overlap in driver gene mutations between them. This suggests that the two components shared a common origin of clones. These findings emphasize the importance of personalized clinical management for prostate SCC, and specific molecular findings can help optimize treatment strategies.


Subject(s)
Carcinoma, Squamous Cell , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Androgen Antagonists , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Carcinoma, Squamous Cell/pathology , Genomics
3.
J Oncol ; 2022: 8423173, 2022.
Article in English | MEDLINE | ID: mdl-35211173

ABSTRACT

MFAP2 has been reported to play an oncogenic role in several types of human cancers. However, the expression profile of MFAP2 in various cancers and its impact on prognosis and immune infiltration remain unclear. In this study, the mRNA expression and protein expression of MFAP2 in normal tissues, tumor cell lines, and 33 malignant tumor tissues were analyzed comprehensively using Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA), Oncomine and UALCAN databases, and the expression of MFAP2 in different grades and stages of cancers was assessed using Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Tumor and Immune System Interaction Database (TISIDB). In general, MFAP2 showed distinct expression in most tumor and normal tissues, closely associated with higher tumor grade, higher tumor stage, and poor survival in multiple cancers. A search of the UALCAN database and the cBioPortal database revealed that this difference in mRNA level expression could be partly attributed to abnormal DNA methylation and mutations at the genomic level. In addition, MFAP2 expression was also associated with tumor mutation burden, microsatellite instability, and neoantigens in different cancer types. More importantly, the TIMER and TISIDB databases also showed that MFAP2 levels were significantly correlated with immune infiltration abundance and immune-related gene markers, as well as ESTIMATE scores. By qPCR, MFAP2 expression was validated in four kinds of tumor tissue samples. The present study combined several databases and performed a pan-cancer analysis of the expression profile, methylation, and mutation for MFAP2 and its implications for prognosis and immune infiltration, suggesting that MFAP2 could contribute to malignant properties of many tumors. MFAP2 may be an important biomarker with prognostic value and has the potential to be a target for tumor immunotherapy.

4.
Cancer Med ; 11(10): 2159-2170, 2022 05.
Article in English | MEDLINE | ID: mdl-35187852

ABSTRACT

BACKGROUND: Increasing evidence has been confirmed that small nucleolar RNAs (SnoRNAs) play critical roles in tumorigenesis and exhibit prognostic value in clinical practice. However, there is short of systematic research on SnoRNAs in ovarian cancer (OV). MATERIAL/METHODS: 379 OV patients with RNA-Seq and clinical parameters from TCGA database and 5 paired clinical OV tissues were embedded in our study. Cox regression analysis was used to identify prognostic SnoRNAs and construct prediction model. SNORic database was adopted to examine the copy number variation of SnoRNAs. ROC curves and KM plot curves were applied to validate the prognostic model. Besides, the model was validated in 5 paired clinical tissues by real-time PCR, H&E staining and immunohistochemistry. RESULTS: A prognostic model was constructed on the basis of SnoRNAs in OV patients. Patients with higher RiskScore had poor clinicopathological parameters, including higher age, larger tumor size, advanced stage and with tumor status. KM plot analysis confirmed that patients with higher RiskScore had poorer prognosis in subgroup of age, tumor size, and stage. 7 of 9 SnoRNAs in the prognostic model had positive correlation with their host genes. Moreover, 5 of 9 SnoRNAs in the prognostic model correlated with their CNVs, and SNORD105B had the strongest correction with its CNVs. ROC curve showed that the RiskScore had excellent specificity and accuracy. Further, results of H&E staining and immunohistochemistry of Ki67, P53 and P16 confirmed that patients with higher RiskScore are more malignant. CONCLUSIONS: In summary, we identified a nine-SnoRNAs signature as an independent indicator to predict prognosis of OV, providing a prospective prognostic biomarker and potential therapeutic targets for ovarian cancer.


Subject(s)
Ovarian Neoplasms , RNA, Small Nucleolar , Carcinoma, Ovarian Epithelial , DNA Copy Number Variations , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Prognosis , Prospective Studies , RNA, Small Nucleolar/genetics
5.
Arch Pathol Lab Med ; 145(4): 461-493, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32589068

ABSTRACT

CONTEXT.­: Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.­: To update grading recommendations. DATA SOURCES.­: Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.­: Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.


Subject(s)
Neoplasm Grading/standards , Pathology/standards , Prostatic Neoplasms/pathology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biopsy, Needle/standards , Consensus , Humans , Image-Guided Biopsy/standards , Immunohistochemistry/standards , Magnetic Resonance Imaging/standards , Male , Molecular Diagnostic Techniques/standards , Predictive Value of Tests , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/genetics
6.
Mol Brain ; 13(1): 42, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32183852

ABSTRACT

AIM: Active changes in neuronal DNA methylation and demethylation appear to act as controllers of synaptic scaling and glutamate receptor trafficking in learning and memory formation. DNA methyltransferases (DNMTs), including proteins encoded by Dnmt1, Dnmt3a and Dnmt3b, are dominant enzymes carrying out DNA methylation. Our previous study demonstrated the important roles that DNMT1 and DNMT3a play in synaptic function and memory. In this study, we aim to explore the role of DNMT3b and its-mediated DNA methylation in memory processes. METHODS: Dnmt3b was knocked down specifically in dorsal CA1 neurons of adult mice hippocampus by AAV-syn-Cre-GFP virus injection. Behavioral tests were used to evaluate memory performance. Gene expression microarray analysis followed by quantitative RT-PCR were performed to find differential expression genes. RESULTS: Dnmt3bflox/flox mice receiving Cre-virus infection showed impaired novel object-place recognition (NPR) and normal novel object recognition (NOR), in comparison to mice receiving control GFP-virus infection. Microarray analysis revealed differential expression of K+ channel subunits in the hippocampus of Dnmt3bflox/flox mice receiving Cre-virus injection. Increased Kcne2 expression was confirmed by following qRT-PCR analysis. We also found that NPR training and testing induced up-regulation of hippocampal Dnmt1 and Dnmt3a mRNA expression in control mice, but not in Cre-virus injected mice. Our findings thus demonstrate that conditional Dnmt3b deletion in a sub-region of the hippocampus impairs a specific form of recognition memory that is hippocampus-dependent.


Subject(s)
CA1 Region, Hippocampal/enzymology , DNA (Cytosine-5-)-Methyltransferases/genetics , Gene Deletion , Memory , Recognition, Psychology , Animals , Mice , DNA Methyltransferase 3B
7.
Biochem Biophys Res Commun ; 526(2): 361-367, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32222282

ABSTRACT

Dnmt1, Dnmt3a and Dnmt3b are main genes encoding DNA methyltransferases (Dnmts) which catalyze DNA methylation and regulate gene expression without changing DNA sequence. Our previous study disclosed that double knockout of Dnmt1 and Dnmt3a in forebrain excitatory neurons impaired synaptic plasticity and led to hippocampus-dependent learning and memory deficits, however the underlying synaptic mechanisms remain uncertain. In this study, we selectively knocked down the expression of Dnmt1 and Dnmt3a in primary cultured hippocampal neurons derived from embryonic Dnmt1,3a2flox/2flox mice by transfection with Cre-expressing virus, to study the effect of Dnmts and mediated DNA methylation on synaptogenesis and synaptic function. We found that the hippocampal neurons at 15 days in vitro (DIV15) exhibited similar size of cell body, but longer dendrites with reduced number of branches and lower density of excitatory synapses formation after virus-mediated Dnmt1 and Dnmt3a deletion. Supportively, cultured neurons with Dnmt1 and Dnmt3a deficiency displayed reduced frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), indicating that both pre- and post-synaptic dysfunction are involved. In addition, our Ca2+-image study with Rhod-3AM revealed suppression of glutamate-evoked elevation of cytoplasmic [Ca2+] after Dnmt1 and Dnmt3a deletion. Altogether our findings provide new evidence that normal expression of Dnmt1 and Dnmt3a in hippocampal neurons are essential for excitatory synaptogenesis and synaptic function.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Excitatory Postsynaptic Potentials , Hippocampus/cytology , Neurons/cytology , Synapses/metabolism , Animals , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Gene Deletion , Gene Knockdown Techniques , Mice , Neurogenesis , Neurons/metabolism , Synapses/genetics , Transfection , Viruses/genetics
8.
Pulm Circ ; 10(4): 2045894020946670, 2020.
Article in English | MEDLINE | ID: mdl-35154665

ABSTRACT

Transmembrane protein 16A was involved in the development of the monocrotaline-induced pulmonary arterial hypertension model through ERK1/2 activation, and it was considered as potential target for pulmonary arterial hypertension treatment. A pulmonary arterial hypertension rat model was established by intraperitoneal administration of monocrotaline. Noninvasive pulsed-wave Doppler and histological analysis was performed, and it revealed proliferation and remodeling of pulmonary arterioles and right ventricle hypertrophy. In addition, transmembrane protein 16A, proliferating cell nuclear antigen-a proliferate marker, P-ERK1/2 increased following monocrotaline treatment. Expression of transmembrane protein 16A in the pulmonary arteries was co-localized with a specific marker of vascular smooth muscle α-actin. Then, a specific inhibitor of transmembrane protein 16A-T16Ainh-A01 was administered to pulmonary arterial hypertension rats. It was found to alleviate the remodeling of pulmonary arterioles and right ventricle hypertrophy significantly, and decrease the upregulation of proliferating cell nuclear antigen in monocrotaline-induced pulmonary arteries. In addition, T16Ainh-A01 could inhibit the activation of ERK1/2 in pulmonary arterial hypertension model. Transmembrane protein 16A mediated the proliferation and remodeling of pulmonary arterioles in the monocrotaline-induced pulmonary arterial hypertension model. ERK1/2 pathway is one of downstream factors. Long-term use of T16Ainh-A01 in vivo could alleviate remodeling and pressure in pulmonary arterial hypertension.

10.
Mol Med Rep ; 16(1): 591-596, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28560437

ABSTRACT

The aim of the present study was to investigate the expression pattern of four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) in placenta chorionic villi of early embryo growth arrest patients. Chorionic villous specimens were obtained from 40 pregnant patients diagnosed with early embryo growth arrest and 40 healthy women who underwent selective pregnancy termination. Reverse transcription­quantitative polymerase chain reaction, immunohistochemistry and western blot analysis were performed to characterize the mRNA and protein expression of DNMTs in chorionic villous cells. It was identified, among the four DNMTs, DNMT3B presented the highest level of protein expression in both patient groups. Although the mRNA expressions of the four DNMTs were comparable, the DNMT3A protein was specifically downregulated in patients with early embryo growth arrest. Therefore, the current study suggests that an abnormal decrease in DNMT3A protein levels may be involved in the pathogenesis of early embryo growth arrest.


Subject(s)
Chorionic Villi/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Fetal Growth Retardation/genetics , Gene Expression Regulation, Developmental , Adult , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Female , Fetal Growth Retardation/metabolism , Gestational Age , Humans , Immunohistochemistry , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Young Adult
11.
Oncol Lett ; 11(5): 3033-3039, 2016 May.
Article in English | MEDLINE | ID: mdl-27123059

ABSTRACT

The aim of the present study was to investigate the protein expression profiling of pregnane X receptor (PXR) and ATP-binding cassette sub-family B member 1 (ABCB1; also known as MDR1 or P-gp), present in the peripheral blood mononuclear cells (PBMCs) and cancerous tissues of cases of non-small cell lung cancer (NSCLC). Furthermore, the study aimed to assess the feasibility of predicting drug resistance through the medium of PBMCs. Of the subjects included in the study, 37 were histopathologically diagnosed with NSCLC and 17 were control patients without cancer. ThinPrep liquid-based smears with cytosine were applied in the examination of the PBMCs and proved quite effective in preserving the morphology and surface antigens of the lymphocytes. Measurements of expression levels in the PBMCs and cancerous tissues were obtained by immunohistochemical means. The results showed that, with the exception of the selective PXR expression in the normal lung tissues, the two types of proteins existed extensively throughout the PBMCs, normal tissues and tumors. Among the cancer patients, prior to chemotherapy, a significant rise in ABCB1 expression could be observed in the PBMCs, together with a similar rise in ABCB1 and PXR expression in the tumor specimens. Marked upregulation of the two proteins was detected in the PBMCs following 1 cycle of first-line chemotherapy. ABCB1 expression, correlated with PXR, persisted mostly in the PBMCs and tissue samples. When bound to and activated by ligands, PXR translocates from the cytoplasm to the nucleus of the cells. PXR subsequently binds to its DNA response elements as a heterodimer with the retinoid X receptor. A PXR translocation of moderate or low differentiation was identified in 3 cases of adenocarcinoma, which were co-expressing the two genes in the PBMCs prior to chemotherapy. During follow-up visits, tumor recurrence was observed within 3 months in 5 cases, which were characterized by PXR translocation. These findings indicate that the combined expression of PXR and ABCB1 in PBMCs may be used as a prospective indicator in diagnosis prior to histopathological diagnosis, and therefore may function as a novel biomarker for the prediction of drug resistance.

12.
PLoS One ; 8(6): e65422, 2013.
Article in English | MEDLINE | ID: mdl-23762368

ABSTRACT

Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. An increasing number of studies have reported that ghrelin and its identified receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), produces remarkably wide and complex functions and biological effects on specific populations of neurons in central nervous system. In this study, we sought to explore the in vivo effects of acute ghrelin exposure on lateral amygdala (LA) neurons at the physiological and behavioral levels. In vivo extracellular single-unit recordings showed that ghrelin with the concentration of several nanomolars (nM) stimulated spontaneous firing of the LA neurons, an effect that was dose-dependent and could be blocked by co-application of a GHS-R1a antagonist D-Lys3-GHRP-6. We also found that D-Lys3-GHRP-6 inhibited spontaneous firing of the LA neurons in a dose-dependent manner, revealing that tonic GHS-R1a activity contributes to orchestrate the basal activity of the LA neurons. Behaviorally, we found that microinfusion of ghrelin (12 ng) into LA before training interfered with the acquisition of conditioned taste aversion (CTA) as tested at 24 h after conditioning. Pre-treatment with either purified IgG against GHS-R1a or GHS-R1a antagonist blocked ghrelin's effect on CTA memory acquisition. Ghrelin (12 ng) had no effect on CTA memory consolidation or the expression of acquired CTA memory; neither did it affect the total liquid consumption of tested rats. Altogether, our data indicated that ghrelin locally infused into LA blocks acquisition of CTA and its modulation effects on neuronal firing may be involved in this process.


Subject(s)
Action Potentials/drug effects , Amygdala/cytology , Conditioning, Psychological/drug effects , Ghrelin/pharmacology , Neurons/physiology , Taste/drug effects , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Cell Count , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/pharmacology , In Vitro Techniques , Male , Memory/drug effects , Neurons/drug effects , Oligopeptides/pharmacology , Rats , Rats, Wistar , Receptors, Ghrelin/antagonists & inhibitors , Receptors, Ghrelin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...