Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Prolif ; : e13648, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987866

ABSTRACT

A specialised microenvironment, termed niche, provides extrinsic signals for the maintenance of residential stem cells. However, how residential stem cells maintain niche homeostasis and whether stromal niche cells could convert their fate into stem cells to replenish lost stem cells upon systemic stem cell loss remain largely unknown. Here, through systemic identification of JAK/STAT downstream targets in adult Drosophila testis, we show that Escargot (Esg), a member of the Snail family of transcriptional factors, is a putative JAK/STAT downstream target. esg is intrinsically required in cyst stem cells (CySCs) but not in germline stem cells (GSCs). esg depletion in CySCs results in CySC loss due to differentiation and non-cell autonomous GSC loss. Interestingly, hub cells are gradually lost by delaminating from the hub and converting into CySCs in esg-defective testes. Mechanistically, esg directly represses the expression of socs36E, the well-known downstream target and negative regulator of JAK/STAT signalling. Finally, further depletion of socs36E completely rescues the defects observed in esg-defective testes. Collectively, JAK/STAT target Esg suppresses SOCS36E to maintain CySC fate and repress niche cell conversion. Thus, our work uncovers a regulatory loop between JAK/STAT signalling and its downstream targets in controlling testicular niche homeostasis under physiological conditions.

2.
Stem Cell Reports ; 18(10): 1940-1953, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37683644

ABSTRACT

The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.


Subject(s)
Drosophila Proteins , Germ Cells , Stem Cells , Animals , Male , Drosophila melanogaster , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , STAT Transcription Factors/metabolism , Stem Cells/metabolism , Signal Transduction , Janus Kinases/metabolism
3.
Traffic ; 24(12): 552-563, 2023 12.
Article in English | MEDLINE | ID: mdl-37642208

ABSTRACT

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Subject(s)
Drosophila Proteins , Animals , Cell Polarity , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Dynactin Complex/metabolism , Dyneins/metabolism , Epithelial Cells/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Stem Cell Reports ; 17(9): 1914-1923, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35985332

ABSTRACT

Germline stem cells (GSCs) are critical for the reproduction of an organism. The self-renewal and differentiation of GSCs must be tightly controlled to avoid uncontrolled stem cell proliferation or premature stem cell differentiation. However, how the self-renewal and differentiation of GSCs are properly controlled is not fully understood. Here, we find that the novel intrinsic factor Yun is required for female GSC maintenance in Drosophila. GSCs undergo precocious differentiation due to de-repression of differentiation factor Bam by defective BMP/Dpp signaling in the absence of yun. Mechanistically, Yun associates with and stabilizes Thickveins (Tkv), the type I receptor of Dpp/BMP signaling. Finally, ectopic expression of a constitutively active Tkv (TkvQD) completely suppresses GSC loss caused by yun depletion. Collectively, these data demonstrate that Yun functions through Tkv to maintain GSC fate. Our results provide new insight into the regulatory mechanisms of how stem cell maintenance is properly controlled.


Subject(s)
Drosophila Proteins , Oogonial Stem Cells , Animals , Cell Differentiation/physiology , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Germ Cells , Intrinsic Factor/metabolism , Oogonial Stem Cells/metabolism , Ovary/metabolism , Protein Serine-Threonine Kinases , Receptors, Cell Surface/metabolism
5.
Cell Prolif ; 55(5): e13230, 2022 May.
Article in English | MEDLINE | ID: mdl-35437864

ABSTRACT

Stem cells maintain adult tissue homeostasis under physiological conditions. Uncontrolled stem cell proliferation will lead to tumorigenesis. How stem cell proliferation is precisely controlled is still not fully understood. Phosphorylation of Yun is essential for ISC proliferation. Yun is essential for the proliferation of normal and transformed intestinal stem cells. Our mass spectrometry and biochemical data suggest that Yun can be phosphorylated at multiple residues in vivo. Interestingly, we show that the phosphorylation among these residues is likely interdependent. Furthermore, phosphorylation of each residue in Yun is important for its function in ISC proliferation regulation. Thus, our study unveils the important role of post-translational modification of Yun in stem cell proliferation.


Subject(s)
Drosophila Proteins , Adult , Cell Proliferation , Cell Transformation, Neoplastic , Drosophila Proteins/metabolism , Humans , Intestines , Phosphorylation
6.
Stem Cell Reports ; 17(5): 1120-1137, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35427486

ABSTRACT

Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.


Subject(s)
Drosophila Proteins , Animals , Auxilins/metabolism , Cell Proliferation , Drosophila Proteins/metabolism , Drosophila melanogaster , ErbB Receptors/metabolism , Intestines , Receptors, Invertebrate Peptide/genetics , Receptors, Invertebrate Peptide/metabolism
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35115400

ABSTRACT

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Subject(s)
Adult Stem Cells/metabolism , Cell Proliferation/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , E2F1 Transcription Factor/metabolism , Intestines/metabolism , Prohibitins/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation/physiology , Homeostasis/physiology , RNA Interference/physiology , Signal Transduction/physiology
8.
J Genet Genomics ; 49(3): 195-207, 2022 03.
Article in English | MEDLINE | ID: mdl-34547438

ABSTRACT

Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However, the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are not fully understood. Here, we find that Derlin-1 and TER94/VCP/p97, components of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, restrain intestinal stem cell proliferation to maintain intestinal homeostasis in adult Drosophila. Depleting any of them results in increased stem cell proliferation and midgut homeostasis disruption. Derlin-1 is specifically localized in the ER of progenitors, and its C-terminus is required for its function. Interestingly, we find that increased stem cell proliferation is resulted from elevated ROS levels and activated JNK signaling in Derlin-1- or TER94-deficient progenitors. Further removal of reactive oxygen species (ROS) or inhibition of JNK signaling almost completely suppresses increased stem cell proliferation. Together, these data demonstrate that the ERAD pathway is critical for stem cell proliferation and tissue homeostasis. Thus, we provide insights into our understanding of the mechanisms underlying cellular protein homeostasis maintenance (ER protein quality control) in tissue homeostasis and tumor development.


Subject(s)
Adenosine Triphosphatases , Membrane Proteins , Adenosine Triphosphatases/metabolism , Animals , Cell Cycle Proteins/genetics , Drosophila/genetics , Drosophila/metabolism , Endoplasmic Reticulum-Associated Degradation , Homeostasis , Membrane Proteins/metabolism , Valosin Containing Protein/metabolism
9.
Biol Open ; 10(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34731235

ABSTRACT

Adult stem cells are critical for the maintenance of tissue homeostasis. However, how the proliferation and differentiation of intestinal stem cells (ISCs) are regulated remains not fully understood. Here, we find a mutant, stum 9-3, affecting the proliferation and differentiation of Drosophila adult ISCs in a forward genetic screen for factors regulating the proliferation and differentiation ISCs. stum 9-3 acts through the conserved Notch signaling pathway, upstream of the S2 cleavage of the Notch receptor. Interestingly, the phenotype of stum 9-3 mutant is not caused by disruption of stumble (stum), where the p-element is inserted. Detailed mapping, rescue experiments and mutant characterization show that stum 9-3 is a new allele of O-fucosyltransferase 1 (O-fut1). Our results indicate that unexpected mutants with interesting phenotype could be recovered in forward genetic screens using known p-element insertion stocks.


Subject(s)
Alleles , Drosophila Proteins/physiology , Drosophila/genetics , Fucosyltransferases/physiology , Stem Cells/metabolism , Animals , Intestines/cytology
10.
PLoS Genet ; 17(10): e1009834, 2021 10.
Article in English | MEDLINE | ID: mdl-34644293

ABSTRACT

Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Germ Cells/physiology , Stem Cells/physiology , Animals , Cell Self Renewal/genetics , DNA Helicases/metabolism , DNA Repair/genetics , Female , Male , Signal Transduction/genetics , Transcriptome/genetics
11.
Dev Biol ; 476: 294-307, 2021 08.
Article in English | MEDLINE | ID: mdl-33940033

ABSTRACT

During tumorigenesis, tumor cells interact intimately with their surrounding cells (microenvironment) for their growth and progression. However, the roles of tumor microenvironment in tumor development and progression are not fully understood. Here, using an established benign tumor model in adult Drosophila intestines, we find that non-cell autonomous autophagy (NAA) is induced in tumor surrounding neighbor cells. Tumor growth can be significantly suppressed by genetic ablation of autophagy induction in tumor neighboring cells, indicating that tumor neighboring cells act as tumor microenvironment to promote tumor growth. Autophagy in tumor neighboring cells is induced downstream of elevated ROS and activated JNK signaling in tumor cells. Interestingly, we find that active transport of nutrients, such as amino acids, from tumor neighboring cells sustains tumor growth, and increasing nutrient availability could significantly restore tumor growth. Together, these data demonstrate that tumor cells take advantage of their surrounding normal neighbor cells as nutrient sources through NAA to meet their high metabolic demand for growth and progression. Thus we provide insights into our understanding of the mechanisms underlying the interaction between tumor cells and their microenvironment in tumor development.


Subject(s)
Autophagy/physiology , Neoplasms/genetics , Tumor Microenvironment/physiology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Humans , Intestines , MAP Kinase Signaling System , Neoplasms/metabolism
12.
Cell Biol Int ; 44(3): 905-917, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31868274

ABSTRACT

Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)-like cells and mis-differentiated progeny. HS-deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.


Subject(s)
Drosophila/metabolism , Enterocytes/metabolism , Heparitin Sulfate/physiology , Homeostasis , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Death , Cell Differentiation , Cell Proliferation , Cytokines/metabolism , Drosophila Proteins/metabolism , Enterocytes/cytology , Epidermal Growth Factor/metabolism , Female , Intestines/cytology
13.
Biol Open ; 8(10)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31628141

ABSTRACT

Tissue homeostasis is maintained by differentiated progeny of residential stem cells. Both extrinsic signals and intrinsic factors play critical roles in the proliferation and differentiation of adult intestinal stem cells (ISCs). However, how extrinsic signals are transduced into ISCs still remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, negatively regulates progenitor proliferation and differentiation to maintain midgut homeostasis under physiological conditions. Interestingly, HS depletion in progenitors results in inactivation of Decapentaplegic (Dpp) signaling. Dpp signal inactivation in progenitors resembles HS-deficient intestines. Ectopic Dpp signaling completely rescued the defects caused by HS depletion. Taken together, these data demonstrate that HS is required for Dpp signaling to maintain midgut homeostasis. Our results provide insight into the regulatory mechanisms of how extrinsic signals are transduced into stem cells to regulate their proliferation and differentiation.

14.
Dev Biol ; 439(1): 42-51, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29679558

ABSTRACT

Most, if not all, stem cells reside in a defined microenvironment, called the niche. Short-ranged niche signal must be tightly controlled to be active only inside the niche to maintain the proper balance of stem cell self-renewal verse differentiation. However, how niche components restrict localized niche signal activation remains largely unknown. Here, we find that Thickveins (Tkv, a type I receptor of the Dpp signaling pathway) in cyst stem cells (CySCs) of the testis niche prevents Dpp signaling activation outside of the niche. We show that Tkv functions as Dpp trap/sink to spatially restrain Dpp signaling inside the niche. This self-restrained regulation of niche activity by Tkv in CySCs is independent of the canonical Dpp signaling pathway. Our data demonstrate the critical roles of niche components (CySCs) in the self-restrained regulation of niche activity, which could be shed light on niche activity regulation in general.


Subject(s)
Drosophila Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Stem Cell Niche/genetics , Stem Cell Niche/physiology , Animals , Cell Differentiation/physiology , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Gene Expression Regulation, Developmental/genetics , Germ Cells/cytology , Male , Protein Serine-Threonine Kinases/physiology , Receptors, Cell Surface/physiology , Signal Transduction/physiology , Stem Cells/cytology , Testis/metabolism , Testis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...