Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1018975, 2023.
Article in English | MEDLINE | ID: mdl-36794224

ABSTRACT

Egusi watermelon has a unique egusi seed type, which could be useful for breeding both edible seeds and edible flesh in watermelon. However, the genetic basis of the unique egusi seed type is not clear. In the present study, we first reported that at least two genes with inhibitory epistasis were responsible for the thin seed coat (unique egusi seed type) in watermelon. Inheritance analysis of five populations, including F2, BC, and BCF2, suggested that the thin seed coat trait was controlled by a suppressor gene together with the egusi seed locus (eg) in egusi watermelon. Based on high-throughput sequencing technology, two quantitative trait loci located on chromosome 1 and chromosome 6 were identified for the thin seed coat trait in watermelon. One of the loci, the eg locus on chromosome 6, was finely mapped to a genomic region of 15.7 kb, which contained only one candidate gene. Comparative transcriptome analysis highlighted differentially expressed genes involved in cellulose and lignin synthesis between watermelon genotypes varying in the thickness of the seed coat and provided several potential candidate genes for the thin seed coat trait. Taken together, our data suggest that at least two genes are complementarily involved in the thin seed coat trait and will be useful for cloning novel genes. The results presented here provide a new reference for uncovering egusi seed genetic mechanisms and valuable information for marker-assisted selection in seed coat breeding.

2.
J Clin Med ; 12(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835972

ABSTRACT

More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.

3.
Gene ; 849: 146910, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36167181

ABSTRACT

Takifugu genus has been brought to the fore in scientific and practical research due to its compact genome, explosive speciation progress and economic value. Here we updated the chromosome-level genome of Takifugu bimaculatus by an ultra-high-density linkage map, a classic and accurate way of chromosome assembly. The map constituted a robust assembly frame, with 92.2% (372.77 Mb) of the draft genome cumulatively placed. With intraspecies and interspecies comparative genomic analysis, we developed a criterion to quantify the differences between assemblies and established a novel way to integrate information from multiple assemblies. The integrated assembly rectified potential mis-assemblies, greatly improving the genome contiguity and correctness. Our results rendered profound information on the genetic recombination of T. bimaculatus and provided new insights into effective genome assembly. The consolidated assembly will be a contributory tool of T. bimaculatus and broadly across the Takifugu by providing a convincing reference for genomic research.


Subject(s)
Genome , Takifugu , Animals , Takifugu/genetics , Chromosome Mapping , Genome/genetics , Genomics , Recombination, Genetic , Genetic Linkage
4.
Front Psychiatry ; 13: 880978, 2022.
Article in English | MEDLINE | ID: mdl-35558429

ABSTRACT

Background: The novel coronavirus disease 2019 (COVID-19) pandemic causes great disruption to cancer care services, which might bring about psychological problems and further lower both physical and mental life quality in cancer patients. Until now, very few studies focused on the psychological distress of patients with advanced melanoma before or during the epidemic. This study aimed to elucidate the fear of progression (FoP), anxiety, depression, and related independent predictors in patients with advanced melanoma during the COVID-19 outbreak. Methods: Two hundred and seventy-three patients with unresectable stage III or metastatic melanoma were recruited from February 2020 to November 2021, and completed the Fear of Progression Questionnaire-Short Form (FoP-Q-SF), State Trait Anxiety Inventory (STAI-6), and Patient Health Questionnaire (PHQ-9). Results: One hundred and seventy-four (64.7%) patients experienced heighted FoP (FoP-Q-SF: 39.9 ± 11.0), 198 (72.5%) patients reported elevated anxiety (STAI-6: 13.1 ± 3.0), and 62 (22.7%) patients had increased depression (PHQ-9: 6.4 ± 6.1). In multivariate analysis, illness duration (OR = 0.987 for FoP; OR = 0.984 for depression), cancer stage (OR = 14.394 for anxiety) and disease progression (OR = 1.960 for FoP; OR = 23.235 for anxiety; OR = 1.930 for depression) were independent predictors for FoP, anxiety or depression. Additionally, the high levels of FoP, anxiety and depression were significantly positive correlated with each other (r = 0.466 for FoP and anxiety; r = 0.382 for FoP and depression; r = 0.309 for anxiety and depression). Conclusion: Our study indicates that FoP, anxiety and depression are persisting among patients with advanced melanoma in the COVID-19 and post-COVID-19 era. Effective psycho-oncological interventions are needed for melanoma patients with psychological distress during the ongoing COVID-19 pandemic.

5.
Front Pharmacol ; 13: 828449, 2022.
Article in English | MEDLINE | ID: mdl-35370646

ABSTRACT

Astragalus mongholicus Bunge (Fabaceae) is an ancient Chinese herbal medicine, and Astragalus saponins are the main active components, which have a wide range of biological activities, such as immunomodulation, antioxidation, and neuroprotection. In this study, silver nanoparticles obtained by sodium borohydride reduction were used as the enhanced substrate to detect astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), and isoastragaloside II (6) in the phloem, xylem, and cork by surface-enhanced Raman spectroscopy (SERS). In the SERS spectrum of Astragalus slices, the characteristic peaks were observed at 562, 671, 732, 801, 836, 950, 1,026, 1,391, and 1,584 cm-1, among which 950 cm-1 and 1,391 cm-1 were strong SERS signals. Subsequently, the metabolites of the six kinds of Astragalus saponins were identified by UPLC/ESI/Q-TOF-MS. Totally, 80, 89, and 90 metabolites were identified in rat plasma, urine, and feces, respectively. The metabolism of saponins mainly involves dehydration, deacetylation, dihydroxylation, dexylose reaction, deglycosylation, methylation, deacetylation, and glycol dehydration. Ten metabolites (1-M2, 1-M11, 2-M3, 2-M12, 3-M14, 4-M9, 5-M2, 5-M17, 6-M3, and 6-M12) were identified by comparison with reference standards. Interestingly, Astragalus saponins 1, 2, 5, and 6 were deacetylated to form astragaloside IV (4), which has been reported to have good pharmacological neuroprotective, liver protective, anticancer, and antidiabetic effects. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectroscopy. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectrum, and the metabolites were characterized by UPLC/ESI/Q-TOF-MS, which not only provided a new method for the identification of traditional Chinese medicine but also provided a theoretical basis for the study of the pharmacodynamic substance basis of Astragalus mongholicus saponins.

6.
J Clin Med ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615039

ABSTRACT

Although recent trials started the use of neoadjuvant immunotherapy (NIT) in instability-high (MSI-H) or mismatch repair deficient (dMMR) early-stage or locally advanced colorectal cancer (LACRC), little data on the treatment strategy of NIT has been shown, and whether the tirelizumab mono-immune checkpoint inhibitor (ICI) can be used as NIT for patients with LACRC has not been reported as yet. In this study we report on a locally advanced ascending colon cancer case with a history of incomplete intestinal obstruction which achieved a pathologic complete response (pCR) after treated with Tirelizumab as NIT. A 32-year-old man was diagnosed with locally advanced ascending colon cancer with MSI-H and dMMR. An incomplete intestinal obstruction accompanied with hyperpyrexia occurred unexpectedly and was eased by symptomatic treatment. There was no peritonitis or other acute complications. NIT (three cycles of Tirelizumab) was suggested by the MDT board and partial response was achieved according to CT scanning, and pCR was further revealed by postoperative pathology. A ctDNA clearance confirmed the R0 resection and some immunotherapy related predictors were also detected using the NGS method. Our case study contributes to the evidence on the feasibility, efficacy, and safety of f Tirelizumab as a mono ICI for an optional neoadjuvant therapy in patients with MSI-H/dMMR LACRC.

7.
Front Pharmacol ; 12: 655008, 2021.
Article in English | MEDLINE | ID: mdl-34335243

ABSTRACT

Eggplant (Solanum melongena L.) Calyx is a medicinal and edible traditional Chinese medicine with anti-inflammatory, anti-oxidant, and anti-cancer properties. However, the pharmacodynamic components and metabolic characteristics remain unclear. Amide and phenylpropanoid were the two main constituents, and four amides, including n-trans-p-coumaroyltyramine (1), n-trans-p-coumaroyloctopamine (2), n-trans-p-coumaroylnoradrenline (3), n-trans-feruloyloctopamine (4), and a phenylpropanoid neochlorogenic acid (5) were selected. In this study, these five representative compounds showed cytotoxic activities on A549, HCT116, and MCF7 cells. In addition, the metabolites of 1-5 from the eggplant calyx in rats were identified. In total, 23, 37, 29, and 17 metabolites were separately characterized in rat plasma, urine, feces, and livers, by UPLC/ESI/qTOF-MS analysis. The metabolism of amides and phenylpropanoid was mainly involved in hydroxylation, methylation, glucuronidation, or sulfation reactions. Two hydroxylated metabolites (1-M2 and 2-M3) were clearly identified by comparison with reference standards. Rat liver microsome incubation experiments indicated that P450 enzymes could hydroxylate 1-5, and the methylation reaction of the 7-hydroxyl was also observed. This is the first study on the in vivo metabolism of these compounds, which lays a foundation for follow-up studies on pharmacodynamic evaluations and mechanisms.

8.
Mar Biotechnol (NY) ; 22(5): 631-643, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32666363

ABSTRACT

Large yellow croaker (Larimichthys crocea) is one of the most important cultured marine fish on the southeast coast of China. Its body shape is important for the aquaculture industry since it affects the behavior such as swimming, ingesting, and evading, as well as customer preference. Due to the greater consumer demand of small head, slender body large yellow croaker, selecting and breeding of slender individuals with the assistance of genetic markers will benefit the industry quickly. In this study, several traits were employed to represent body shape, including body depth/body length (BD/BL), body thickness/body length (BT/BL), caudal peduncle depth/caudal peduncle length (CPDLR), tail length/body length (TL/BL), and body area/head area (BA/HA). Genome-wide association study was conducted with a panmictic population of 280 individuals to identify SNP and genes potentially associated with body shape. A set of 20 SNPs on 12 chromosomes were identified to be significantly associated with body shape-related traits. Besides, 5 SNPs were identified to be suggestive associated with CPDLR and BT/BL. Surrounding these SNPs, we found some body shape-related candidate genes, including fabp1, acrv1, bcor, mstn, bambi, and neo1, which involved in lipid metabolism, TGF-ß signaling, and BMP pathway and other important regulatory pathways. These results will be useful for the understanding of the genetic basis of body shape formation and helpful for body shape controlling of large yellow croaker by using marker-assisted selection.


Subject(s)
Genome-Wide Association Study , Perciformes/anatomy & histology , Perciformes/genetics , Animals , Aquaculture , Breeding , Phenotype , Polymorphism, Single Nucleotide
9.
Mar Biotechnol (NY) ; 22(1): 130-144, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31900733

ABSTRACT

Takifugu bimaculatus is a euryhaline species, distributed ranging from the southern Yellow Sea to the South China Sea. Their tolerance to a wide range of salinity and temperature, coupled with a desirable firm texture, makes T. bimaculatus a strong candidate for Takifugu aquaculture in subtropics areas. Due to the increasing demand in markets and emerging of the Takifugu aquaculture industry, close attention has been paid to improvement on the T. bimaculatus production. In aquaculture, the great effort has been put into marker-assisted selective breeding, and efficient improvement was realized. However, few genetic resources on T. bimaculatus are provided so far. Aiming at understanding the genetic basis underlying important economic growth traits, facilitating genetic improvement and enriching the genetic resource in T. bimaculatus, we constructed the first genetic linkage map for T. bimaculatus via double digestion restriction-site association DNA sequencing and conducted quantitative traits locus (QTL) mapping for growth-related traits. The map comprised 1976 single nucleotide polymorphism markers distributed on 22 linkage groups (LG), with a total genetic distance of 2039.74 cM. Based on the linkage map, a chromosome-level assembly was constructed whereby we carried out comparative genomics analysis, verifying the high accuracy on contigs ordering of the linkage map. On the other hand, 18 QTLs associated with growth traits were detected on LG6, LG7, LG8, LG10, LG20, and LG21 with phenotypical variance ranging from 15.1 to 56.4%. Candidate genes participating in cartilage development, fat accumulation, and other growth-related regulation activities were identified from these QTLs, including col11a1, foxa2, and thrap3. The linkage map provided a solid foundation for chromosomes assembly and refinement. QTLs reported here unraveled the genomic architecture of some growth traits, which will advance the investigation of aquaculture breeding efforts in T. bimaculatus.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Takifugu/growth & development , Takifugu/genetics , Animals , Aquaculture , Breeding , Genetic Linkage , Genomics , Genotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Fish Shellfish Immunol ; 96: 190-200, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31765792

ABSTRACT

Complement is a complex component of innate immune system, playing an important role in defense against pathogens and host homeostasis. The complement system has been comprehensively studied in mammals, however less is known about complement in teleost, especially in tetraploid common carp (Cyprinus carpio). In this study, a total of 110 complement genes were identified and characterized in common carp, which include almost all the homologs of mammalian complement genes. These genes were classified into three pathways (alternative pathways, lectin pathways and classical pathways), similar to those in mammals. Phylogenetic and selection pressure analysis showed that the complement genes were evolving-constrained and the function was conserved. Most of the complement genes were highly expressed in spleen, liver, brain and skin among the tested 12 health tissues of common carp. After Aeromonas hydrophila infection in the common carp, many members of complement genes were activated to bring about an immune response and expressed to against any pathogenic encroachment. Gene expression divergences which were found between two homoeologous genes suggested the functional divergences of the homoeologous genes after the 4R WGD event, revealing the evolutionary fate of the tetraploid common carp after the recent WGD.


Subject(s)
Carps/genetics , Complement System Proteins/genetics , Fish Diseases/immunology , Gene Expression Regulation/immunology , Genome/immunology , Immunity, Innate/genetics , Aeromonas hydrophila/physiology , Animals , Carps/immunology , Complement System Proteins/immunology , Evolution, Molecular , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Phylogeny , RNA, Messenger/genetics
11.
Future Oncol ; 15(19): 2241-2249, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31215231

ABSTRACT

Aim: We evaluated the incidence, clinicopathological features, prognostic factors and survival of gastric cancer (GC) with bone metastasis in a single large cancer center in China. Patients & methods: Patients with bone metastasis of GC were retrospectively analyzed. Overall survival was estimated using the Kaplan-Meier method. Clinicopathological factors, which were associated with prognostic factors for survival, were evaluated. Results: The incidence of bone metastasis was 11.3% for metastatic GC patients. Median overall survival time was 6.5 months. Multivariate analysis revealed two independent poor prognostic factors: Eastern Cooperative Oncology Group ≥2 (p = 0.023) and lack of palliative chemotherapy (p = 0.018). Conclusion: The incidence of bone metastasis from metastatic GC was underestimated. The prognosis of GC with bone metastasis was poor.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/epidemiology , Prognosis , Stomach Neoplasms/epidemiology , Adult , Aged , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , China/epidemiology , Disease-Free Survival , Female , Gastrectomy , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Staging , Risk Factors , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
12.
Mar Biotechnol (NY) ; 21(2): 262-275, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30783862

ABSTRACT

The large yellow croaker (Larimichthys crocea) is the most economically important marine cage-farming fish in China in the past decade. However, the sustainable development of large yellow croaker aquaculture has been severely hampered by several diseases, of which, the white spot disease caused by ciliate protozoan parasite Cryptocaryon irritans ranks the most damaging disease in large yellow croaker cage farms. To better understand the genetic basis of parasite infection and disease resistance to C. irritans, it is vital to map the traits and localize the underlying candidate genes in L. crocea genome. Here, we constructed a high-density genetic linkage map using double-digest restriction-site associated DNA (ddRAD)-based high-throughput SNP genotyping data of a F1 mapping family, which had been challenged with C. irritans for resistant trait measure. A total of 5261 SNPs was grouped and oriented into 24 linkage groups (LGs), representing 24 chromosomes of L. crocea. The total genetic map length was 1885.67 cM with an average inter-locus distance of 0.36 cM. Quantitative trait loci (QTL) mapping identified seven significant QTLs in four LGs linked to C. irritans disease resistance. Candidate genes underlying disease resistance were identified from the reference genome, including ifnar1, ifngr2, ikbke, and CD112. Comparative genomic analysis between large yellow croaker and the four closely related species revealed high evolutionary conservation of chromosomes, though inter-chromosomal rearrangements do exist. Especially, the croaker genome structure was closer to the medaka genome than stickleback, indicating that the croaker genome might retain the teleost ancestral genome structure. The high-density genetic linkage map provides an important tool and resource for fine mapping, comparative genome analysis, and molecular selective breeding of large yellow croaker.


Subject(s)
Ciliophora Infections , Disease Resistance/genetics , Genetic Linkage , Perciformes/genetics , Perciformes/parasitology , Animals , Aquaculture , Ciliophora , Fish Diseases/parasitology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
13.
Gene ; 686: 68-75, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30342169

ABSTRACT

Interleukin-17 (IL17) family cytokines are well known for having pro-inflammatory actions as important mediators of mucosal immune responses and are tightly regulated by various kinds of signals. However, most studies of IL17 genes have focused on mammals, and much less is known about IL17 genes in fish species. To better understand the scope and actions of the IL17 gene family in common carp, we characterized seven IL17 gene homologs from genomic and transcriptomic databases that could be classified into three subclasses according to different comparative genomic analyses. Phylogenetic analysis revealed that most IL17s are highly conserved, though recent gene duplication and gene loss events do exist. Through observation, we found that IL17D has undergone gene duplication in common carp and that all the IL17E genes were lost in vertebrates except mammals. The expression patterns of IL17 genes in common carp were examined during early developmental stages and in various healthy tissues, and the results indicated that most IL17 genes are ubiquitously expressed during early development and show particular tissue-specific expression in various healthy tissues, with relatively high levels in the spleen, liver, and kidney. To gain insights into the mucosal actions of inflammatory processes, the expression profiles of IL17 genes in gills from common carp were investigated after experimental challenge with Aeromonas hydrophila. After A. hydrophila infection, most IL17 genes were upregulated at 4 h postinfection in the gill and then gradually declined, while IL17A/F2 and IL17N were generally upregulated at 12 h postinfection, and IL17D2 maintained an increasing tendency. In contrast, IL17D showed the third phenomenon, rising expression, suggesting that immunogenes have different response strategies to bacterial invasion. Overall, the expression of IL17 in unstimulated tissues and toxicity attack test results demonstrated that these genes play critical roles under normal conditions and during bacterial infection. Moreover, this common carp IL17 gene family research provides a genomic resource for future studies on IL17 gene evolution, fish disease management and immune regulation.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Interleukin-17 , Animals , Carps/genetics , Carps/metabolism , Carps/microbiology , Fish Diseases/genetics , Fish Diseases/metabolism , Fish Diseases/microbiology , Fish Diseases/pathology , Fish Proteins/biosynthesis , Fish Proteins/genetics , Genome-Wide Association Study , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/pathology , Gram-Negative Bacterial Infections/veterinary , Interleukin-17/biosynthesis , Interleukin-17/genetics
14.
Front Genet ; 9: 448, 2018.
Article in English | MEDLINE | ID: mdl-30356829

ABSTRACT

Head size is important economic trait for many aquaculture fish which is directly linked to their carcass yield. The genetic basis of head size trait remains unclear in many widely cultured fish species. Common carp (Cyprinus carpio) is one of the most widely studied fish due to its importance on both economic and environmental aspects. In this study, we performed genome-wide association study using 433 Yellow River carp individuals from multiple families to identify loci and genes potentially associated with head size related traits including head length (HL), head length/body length ratio (HBR), eye diameter (ED), and eye cross (EC). QTL mapping was utilized to filter the effects of population stratification and improve power for the candidates identification in the largest surveyed family with a published genetic linkage map. Twelve SNPs showed significant for head size traits in GWAS and 18 QTLs were identified in QTL mapping. Our study combining both GWAS and QTL mapping could compensate the deficiency from each other and advance our understanding of head size traits in common carp. To acquire a better understanding of the correlation between head size and body growth, we also performed comparisons between QTLs of head size traits and growth-related traits. Candidate genes underlying head size traits were identified surrounding the significant SNPs, including parvalbumin, srpk2, fsrp5, igf1, igf3, grb10, igf1r, notch2, sfrp2. Many of these genes have been identified with potential functions on bone formation and growth. Igf1 was a putative gene associated with both head size and body growth in Yellow River carp. The teleost-specific igf3 was a candidate head size related gene, related to both HL and HBR. Our study also indicated the importance of Igf signaling pathway for both growth and head size determination in common carp, which could be potentially used in future selective breeding in common carp as well as other species.

15.
Gene ; 678: 65-72, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30077012

ABSTRACT

Taste receptors (TRs) are seven trans-membrane G protein-coupled receptors as well as the interface between internal and external milieus, which playing pivotal roles in nutrient identification and acquisition. To better understand the scope and function of tr gene family in common carp, one of the most economic and important breeding fish species, which has undergone an additional round of whole genome duplication (WGD), we characterized 13 tr gene homologues including eight type I and five type II taste receptor genes from common carp genome, which were more than any other teleosts. Phylogenetic and syntenic analysis revealed the evolution dynamics of tr gene family, which was highly conserved, though gene duplication and gene loss do exist recently. Furthermore, the motif and dN/dS analyses indicated that these receptors were under different negative selection pressure. Additionally, the gene expression divergences were observed in 12 health tissues of common carp, with a relatively high level in barbel and head kidney, demonstrating tissue-specific expression of tr genes in the tetraploidized genome. The overarching goals of this study were to identify the abundance of tr genes in common carp, compare the gene divergence among species with varied feeding habits and provide genomic resources for future studies on teleost taste sensation.


Subject(s)
Carps/genetics , Gene Expression , Receptors, G-Protein-Coupled/genetics , Animals , Evolution, Molecular , Fish Proteins/genetics , Head Kidney/metabolism , Multigene Family , Organ Specificity , Phylogeny , Tetraploidy , Tissue Distribution
16.
Mar Biotechnol (NY) ; 20(5): 573-583, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29882019

ABSTRACT

Common carp (Cyprinus carpio) is one of the most widely studied fish species due to its great economic value and strong environmental adaptability. Scattered scale, a typical phenotype of the mirror carp that is derived from Europe, has never been observed in the Yellow River carp previously. We recently identified approximately one fourth of the F1 progenies displaying scattered scale in a full-sib Yellow River carp family in our breeding program, despite both parents that showed wild type with normal scale patterns. This family provides us unique materials to investigate the genetic basis underlying the abnormal scale mutant in Yellow River carp population. Genome-wide association study (GWAS) and association mapping were performed based on genome-wide single nucleotide polymorphisms (SNP) genotyped with common carp 250 K SNP genotyping array in 82 samples of the Yellow River carp family. We identified a 1.4 Mb genome region that was significantly associated with abnormal scattered scale patterns. We further identified a deletion mutation in fibroblast growth factor receptor 1 a1 (fgfr1a1) gene within this genome region. Amplification and sequencing analysis of this gene revealed a 311-bp deletion in intron 10 and exon 11, which proved that fgfr1a1 could be the causal gene responsible for abnormal scattered scale in the Yellow River carp family. Since similar fragment mutation with 306-bp and 310-bp deletions had been previously reported as causal mutation of scattered scale patterns in the mirror carp, we speculate that either the deletion mutation was introduced from Europe-derived mirror carp or the deletion independently occurred in the mutation hotspot in fgfr1a1 gene. The results provided insights into the genetic basis of scale pattern mutant in Yellow River carp population, which would help us to eliminate the recessive allele of the abnormal scale patterns in Yellow River carp population by molecular marker-assisted breeding.


Subject(s)
Animal Scales/metabolism , Base Sequence , Carps/genetics , Fish Proteins/genetics , Genome , Receptor, Fibroblast Growth Factor, Type 1/genetics , Sequence Deletion , Animal Scales/abnormalities , Animals , Breeding , China , Chromosome Mapping , Europe , Exons , Female , Gene Expression , Genome-Wide Association Study , Genotype , Introns , Male , Oligonucleotide Array Sequence Analysis , Phenotype , Polymorphism, Single Nucleotide , Rivers
17.
Biosci Rep ; 38(3)2018 06 29.
Article in English | MEDLINE | ID: mdl-29895719

ABSTRACT

miR-34 was reported to be involved in multiple tumors occurrence and development. The aim of the present study was to explore the impact of miR-34 on osteosarcoma and related mechanisms. Tumor tissues and non-tumor tissues of 34 patients with osteosarcoma were collected. qRT-PCR detection revealed that miR-34 was significantly down-regulated in tumor tissues (P<0.05). hFOB 1.19 and MG-63 cells were cultured. qRT-PCR detection showed that miR-34 was also significantly down-regulated in MG-63 cells (P<0.05). After transfection by miR-34 mimics, MG-63 cells proliferation in nude mice was significantly impaired (P<0.05), and percentage of apoptosis as well as caspase-3 positive cells proportion of osteosarcoma tissue in nude mice was markly increased (P<0.05). Western blot and immunofluorescence results also demonstrated that TGIF2 relative expression and TGIF2 positive cells proportion were both dramatically decreased (P<0.05). By luciferase reporter assay, we found that TGIF2 was the target gene of miR-34. After transfected by TGIF2 overexpression vector or co-transfected by miR-34 mimics and TGIF2 overexpression vector, we observed that, compared with blank group, tumor volume was significantly increased and apoptotic cells as well as caspase-3 positive cells proportion was obviously decreased in TGIF2 group (P<0.05), while no significant difference was found in these indicators between blank group and TGIF2 + mimics group. We concluded that miR-34 inhibited growth and promoted apoptosis of osteosarcoma in nude mice through targetting regulated TGIF2 expression.


Subject(s)
Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , MicroRNAs/genetics , Osteosarcoma/genetics , Repressor Proteins/genetics , Animals , Apoptosis , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Genes, Reporter , Heterografts , Homeodomain Proteins/metabolism , Humans , Luciferases/genetics , Luciferases/metabolism , Male , Mice , Mice, Nude , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Molecular Mimicry , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Repressor Proteins/metabolism , Signal Transduction , Tumor Burden
18.
Dalton Trans ; 47(6): 1764-1767, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29337320

ABSTRACT

Enantiopure ligands, namely (R,R)- and (S,S)-2,2'-(1,4-phenylene) bis(4,5-dihydrothiazole-4-carboxylic acid) (H2LRR, and H2LSS) were synthesized, and homochiral metallocyclic rings {Ni6LRR6(H2O)12} (1RR) and {Ni6LSS6(H2O)12} (1SS) were obtained and their structures were determined. The complexes exhibit excellent activity for the photocatalytic degradation of organic dyes.

19.
Gene ; 627: 157-163, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28627438

ABSTRACT

Bone morphogenetic proteins (Bmps) are a group of signaling molecules known to play important roles during formation and maintenance of various organs, not only bone, but also muscle, blood and so on. Common carp (Cyprinus carpio) is one of the most intensively studied fish due to its economic and environmental importance. Besides, common carp has encountered an additional round of whole genome duplication (WGD) compared with many closely related diploid teleost, which make it one of the most important models for genome evolutionary studies in teleost. Comprehensive genome resources of common carp have been developed recently, which facilitate the thorough characterization of bmp gene family in the tetraploidized common carp genome. We identified a total of 44 bmps from the common carp genome, which are twice as many as that of zebrafish. Phylogenetic analysis revealed that most of bmps are highly conserved. Comparative analysis was performed across six typical vertebrate genomes. It appeared that all the bmp genes in common carp were duplicated. Obviously, the expansion of the bmp gene family in common carp was due to the latest additional round of whole genome duplication and made it more abundant than other diploid teleosts. Expression signatures were assessed in major tissues, including gill, intestine, liver, spleen, skin, heart, gonad, muscle, kidney, head kidney, brain and blood, which demonstrated the comprehensive expression profiles of bmp genes in the tetraploidized genome. Significant gene expression divergences were observed which revealed substantial functional divergences of those duplicated bmp genes post the latest WGD event. The conserved synteny blocks of bmp5s revealed the genome rearrangement of common carp post the 4R WGD. The whole set of bmp gene family in common carp provides insight into gene fate of tetraploidized common carp genome post recent WGD.


Subject(s)
Bone Morphogenetic Proteins/genetics , Carps/genetics , Fish Proteins/genetics , Gene Duplication , Animals , Carps/growth & development , Gene Expression , Genome-Wide Association Study , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...