Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432983

ABSTRACT

Using waste rubber tires for concrete production will reduce the demand for natural aggregate and help to reduce environmental pollution. The main challenge of using waste rubber tires in concrete is the deterioration of mechanical properties, due to poor bonding between rubber and cement matrix. This research aims to evaluate the mechanical and thermal properties of rubberised concrete produced by using different proportions of rubber powder and silica fume. Ordinary Portland cement was partially replaced with silica fume by amounts of 5%, 10%, 15% and 20%, while sand was replaced by 10%, 20% and 30% with waste rubber powder. Tests were carried out in order to determine workability, density, compressive strength, splitting tensile strength, elastic modulus, thermal properties, water absorption and shrinkage of rubberised concrete. The compressive strength and splitting tensile strength of concrete produced using waste rubber powder were reduced by 10-52% and 9-57%, respectively. However, the reduction in modulus of elasticity was 2-36%, less severe than compressive and splitting tensile strengths. An optimum silica fume content of 15% was observed based on the results of mechanical properties. The average shrinkage of concrete containing 15% silica fume increased from -0.051% to -0.085% at 28 days, as the content of waste rubber powder increased from 10% to 30%. While the thermal conductivity of rubberised concrete was reduced by 9-35% compared to the control sample. Linear equations were found to correlate the density, splitting tensile strength, modulus of elasticity and thermal conductivity of concrete with silica fume and waste rubber powder.

2.
Materials (Basel) ; 14(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922871

ABSTRACT

The rapid development of the construction sector has led to massive use of raw construction materials, which are at risk of exhaustion. The problem is aggravated by the high demand for cement as binding powder and the mass production of clay bricks for construction purposes. This scenario has led to high energy consumption and carbon emissions in their production. In this regard, bio-cementation is considered a green solution to building construction, because this technology is environmentally friendly and capable of reducing carbon emissions, thus slowing the global warming rate. Most of the previously published articles have focused on microbiologically induced calcium carbonate precipitation (MICP), with the mechanism of bio-cementation related to the occurrence of urea hydrolysis as a result of the urease enzymatic activity by the microbes that yielded ammonium and carbonate ions. These ions would then react with calcium ions under favorable conditions to precipitate calcium carbonate. MICP was investigated for crack repair and the surface treatment of various types of construction materials. Research on MICP for the production of binders in construction materials has become a recent trend in construction engineering. With the development of cutting edge MICP research, it is beneficial for this article to review the recent trend of MICP in construction engineering, so that a comprehensive understanding on microbial utilization for bio-cementation can be achieved.

3.
Polymers (Basel) ; 12(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023168

ABSTRACT

This paper investigated the static behaviour of glass fibre reinforced polymer (GFRP) built-up hollow and concrete filled built-up beams tested under four-point bending with a span-to-depth ratio of 1.67, therefore focusing their shear performance. Two parameters considered for hollow sections were longitudinal web stiffener and strengthening at the web-flange junction. The experimental results indicated that the GFRP hollow beams failed by web crushing at supports; therefore, the longitudinal web stiffener has an insignificant effect on improving the maximum load. Strengthening web-flange junctions using rectangular hollow sections increased the maximum load by 47%. Concrete infill could effectively prevent the web crushing, and it demonstrated the highest load increment of 162%. The concrete filled GFRP composite beam failed by diagonal tension in the lightweight concrete core. The finite element models adopting Hashin damage criteria yielded are in good agreement with the experimental results in terms of maximum load and failure mode. Based on the numerical study, the longitudinal web stiffener could prevent the web buckling of the slender GFRP beam and improved the maximum load by 136%. The maximum load may be further improved by increasing the thickness of the GFRP section and the size of rectangular hollow sections used for strengthening. It was found that the bond-slip at the concrete-GFRP interface affected the shear resistance of concrete-GFRP composite beam.

4.
Materials (Basel) ; 13(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151088

ABSTRACT

This study evaluates the mechanical, durability, and residual compressive strength (after being exposed to 20, 120, 250, 400 and 600 °C) of mortar that uses recycled iron powder (RIP) as a fine aggregate. Within this context, mechanical strength, shrinkage, durability, and residual strength tests were performed on mortar made with seven different percentages (0%, 5%, 10%, 15%, 20%, 30% and 50%) of replacement of natural sand (NS) by RIP. It was found that the mechanical strength of mortar increased when replaced with up to 30% NS by RIP. In addition, the increase was 30% for compressive, 18% for tensile, and 47% for flexural strength at 28 days, respectively, compared to the reference mortar (mortar made with 100% NS). Shrinkage was observed for the mortar made with 100% NS, while both shrinkage and expansion occurred in the mortar made with RIP, especially for RIP higher than 5%. Furthermore, significantly lower porosity and capillary water absorption were observed for mortar made with up to 30% RIP, compared to that made with 100% NS, which decreased by 36% for porosity and 48% for water absorption. As the temperature increased, the strength decreased for all mixes, and the drop was more pronounced for the temperatures above 250 °C and 50% RIP. This study demonstrates that up to 30% RIP can be utilized as a fine aggregate in mortar due to its better mechanical and durability performances.

5.
Materials (Basel) ; 12(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987183

ABSTRACT

Concrete production utilizes cement as its major ingredient. Cement production is an important consumer of natural resources and energy. Furthermore, the cement industry is a significant CO2 producer. To reduce the environmental impact of concrete production, supplementary cementitious materials such as fly ash, blast furnace slag, and silica fume are commonly used as (partial) cement replacement materials. However, these materials are industrial by-products and their availability is expected to decrease in the future due to, e.g., closing of coal power plants. In addition, these materials are not available everywhere, for example, in developing countries. In these countries, industrial and agricultural wastes with pozzolanic behavior offer opportunities for use in concrete production. This paper summarizes the engineering properties of concrete produced using widespread agricultural wastes such as palm oil fuel ash, rice husk ash, sugarcane bagasse ash, and bamboo leaf ash. Research on cement replacement containing agricultural wastes has shown that there is great potential for their utilization as partial replacement for cement and aggregates in concrete production. When properly designed, concretes containing these wastes have similar or slightly better mechanical and durability properties compared to ordinary Portland cement (OPC) concrete. Thus, successful use of these wastes in concrete offers novel sustainable materials and contributes to greener construction as it reduces the amount of waste, while also minimizing the use of virgin raw materials for cement production. This paper will help the concrete industry choose relevant waste products and their optimum content for concrete production. Furthermore, this study identifies research gaps which may help researchers in further studying concrete based on agricultural waste materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...