Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
2.
Small ; : e2402057, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751062

ABSTRACT

Graphene nanoscroll (GNS) is an important 1D tubular form of graphene-derivative materials, which has garnered widely attention. However, conventional fabrication methods commonly suffer from complex processing and time-consuming. Herein, with graphene oxide (GO) as a precursor, the study puts forward a facile air-plasma synthesis strategy to fabricate 3D graphene nanoscroll-nanosheet aerogels (GSSA). It is demonstrated that without using any chemical additives, a highly efficient reduction-exfoliation-scrolling process can be achieved all-in-one at room temperature within 1 s. The GNSs "grew" from 2D graphene sheets and firmly cross-linked them together, and they not only provide a shortcut path for electron transport but also act as intrinsic spacers to prevent restacking of graphene sheets. When using as an electrode material for capacitive deionization (CDI), GSSA exhibits excellent merits of salt-removal performance. These findings open a new pathway to large-scale synthesis of high-quality and high-purity GNS-based materials with promising applications in CDI and beyond.

3.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Article in English, Chinese | MEDLINE | ID: mdl-38621733

ABSTRACT

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Subject(s)
Insulin Resistance , Moxibustion , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Rats, Wistar , Toll-Like Receptor 4/genetics , Lipopolysaccharides/metabolism , Intestinal Barrier Function , Occludin/metabolism , Claudin-1/metabolism , Signal Transduction , Obesity/genetics , Obesity/therapy , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
ACS Appl Mater Interfaces ; 16(12): 14742-14749, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483824

ABSTRACT

The sluggish kinetics of the oxygen evolution reaction (OER) always results in a high overpotential at the anode of water electrolysis and an excessive electric energy consumption, which has been a major obstacle for hydrogen production through water electrolysis. In this study, we present a CoNi-LDH/Fe MOF/NF heterostructure catalyst with nanoneedle array morphology for the OER. In 1.0 M KOH solution, the heterostructure catalyst only required overpotentials of 275 and 305 mV to achieve high current densities of 500 and 1000 mA/cm2 for OER, respectively. The catalytic activities are much higher than those of the reference single-component CoNi-LDH/NF and Fe MOF/NF catalysts. The improved catalytic performance of the heterostructure catalyst can be ascribed to the synergistic effect of CoNi-LDH and Fe MOF. In particular, when the anodic OER is replaced with the urea oxidation reaction (UOR), which has a relatively lower thermodynamic equilibrium potential and is expected to reduce the cell voltage, the overpotentials required to achieve the same current densities can be reduced by 80 and 40 mV, respectively. The cell voltage required to drive overall urea splitting (OUS) is only 1.55 V at 100 mA/cm2 in the Pt/C/NF||CoNi-LDH/Fe MOF/NF two-electrode electrolytic cell. This value is 60 mV lower compared with that required for overall water splitting (OWS). Our results indicate that a reasonable construction of a heterostructure catalyst can significantly give rise to higher electrocatalytic performance, and using UOR to replace the anodic OER of the OWS can greatly reduce the electrolytic energy consumption.

5.
Front Bioeng Biotechnol ; 12: 1346850, 2024.
Article in English | MEDLINE | ID: mdl-38318194

ABSTRACT

Objective: To investigate the biomechanical properties of the retropharyngeal reduction plate by comparing the traditional posterior pedicle screw-rod fixation by finite element analysis. Methods: Two three-dimensional finite element digital models of the retropharyngeal reduction plate and posterior pedicle screw-rod fixation were constructed and validated based on the DICOM (Digital Imaging and Communications in Medicine) data from C1 to C4. The biomechanical finite element analysis values of two internal fixations were measured and calculated under different conditions, including flexion, extension, bending, and rotation. Results: In addition to the backward extension, there was no significant difference in the maximum von Mises stress between the retropharyngeal reduction plate and posterior pedicle screw fixation under other movement conditions. The retropharyngeal reduction plate has a more uniform distribution under different conditions, such as flexion, extension, bending, and rotation. The stress tolerance of the two internal fixations was basically consistent in flexion, extension, left bending, and right bending. Conclusion: The retropharyngeal reduction plate has a relatively good biomechanical stability without obvious stress concentration under different movement conditions. It shows potential as a fixation option for the treatment of atlantoaxial dislocation.

6.
ACS Biomater Sci Eng ; 10(1): 255-270, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38118130

ABSTRACT

The number of patients with bone defects caused by trauma, bone tumors, and osteoporosis has increased considerably. The repair of irregular, recurring, and large bone defects poses a great challenge to clinicians. Bone tissue engineering is emerging as an appropriate strategy to replace autologous bone grafting in the repair of critically sized bone defects. However, the suitability of bone tissue engineering scaffolds in terms of structure, mechanics, degradation, and the microenvironment is inadequate. Three-dimensional (3D) printing is an advanced additive-manufacturing technology widely used for bone repair. 3D printing constructs personalized structurally adapted scaffolds based on 3D models reconstructed from CT images. The contradiction between the mechanics and degradation is resolved by altering the stacking structure. The local microenvironment of the implant is improved by designing an internal pore structure and a spatiotemporal factor release system. Therefore, there has been a boom in the 3D printing of personalized bone repair scaffolds. In this review, successful research on the preparation of highly bioadaptive bone tissue engineering scaffolds using 3D printing is presented. The mechanisms of structural, mechanical, degradation, and microenvironmental adaptations of bone prostheses and their interactions were elucidated to provide a feasible strategy for constructing highly bioadaptive bone tissue engineering scaffolds.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Bone and Bones/diagnostic imaging , Bone and Bones/surgery , Printing, Three-Dimensional
7.
Eur Spine J ; 33(3): 1098-1108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38153529

ABSTRACT

PURPOSE: This study aimed to establish a nomogram to predict the risk of venous thromboembolism (VTE), identifying potential risk factors, and providing theoretical basis for prevention of VTE after spinal surgery. METHODS: A retrospective analysis was conducted on 2754 patients who underwent spinal surgery. The general characteristics of the training group were initially screened using univariate logistic analysis, and the LASSO method was used for optimal prediction. Subsequently, multivariate logistic regression analysis was performed to identify independent risk factors for postoperative VTE in the training group, and a nomogram for predict risk of VTE was established. The discrimination, calibration, and clinical usefulness of the nomogram were separately evaluated using the C-index, receiver operating characteristic curve, calibration plot and clinical decision curve, and was validated using data from the validation group finally. RESULTS: Multivariate logistic regression analysis identified 10 independent risk factors for VTE after spinal surgery. A nomogram was established based on these independent risk factors. The C-index for the training and validation groups indicating high accuracy and stability of the model. The area under the receiver operating characteristic curve indicating excellent discrimination ability; the calibration curves showed outstanding calibration for both the training and validation groups. Decision curve analysis showed the clinical net benefit of using the nomogram could be maximized in the probability threshold range of 0.01-1. CONCLUSION: Patients undergoing spinal surgery with elevated D-dimer levels, prolonger surgical, and cervical surgery have higher risk of VTE. The nomogram can provide a theoretical basis for clinicians to prevent VTE.


Subject(s)
Nomograms , Venous Thromboembolism , Humans , Retrospective Studies , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Neurosurgical Procedures , Neck , Risk Factors
8.
Front Bioeng Biotechnol ; 11: 1268557, 2023.
Article in English | MEDLINE | ID: mdl-38026889

ABSTRACT

Objective: To investigate the biomechanical characteristics of different posterior fixation techniques in treatment of osteoporotic thoracolumbar burst fractures by finite element analysis. Methods: The Dicom format images of T10-L5 segments were obtained from CT scanning of a volunteer, and transferred to the Geomagic Studio software, which was used to build digital models. L1 osteoporotic burst fracture and different posterior fixation techniques were simulated by SolidWorks software. The data of ROM, the maximum displacement of fixed segment, ROM of fractured L1 vertebrae, the stress on the screws and rods as well as on fractured L1 vertebrae under different movement conditions were collected and analysed by finite element analysis. Results: Among the four groups, the largest ROM of fixed segment, the maximum displacement of fixed segment and ROM of fractured vertebrae occurred in CBT, and the corresponding data was 1.3°, 2.57 mm and 1.37°, respectively. While the smallest ROM of fixed segment, the maximum displacement of fixed segment and ROM of fractured vertebrae was found in LSPS, and the corresponding data was 0.92°, 2.46 mm and 0.89°, respectively. The largest stress of screws was 390.97 Mpa, appeared in CBT, and the largest stress of rods was 84.68 MPa, appeared in LSPS. The stress concentrated at the junction area between the root screws and rods. The maximum stress on fractured vertebrae was 93.25 MPa, appeared in CBT and the minimum stress was 56.68 MPa, appeared in CAPS. And the stress of fractured vertebrae concentrated in the middle and posterior column of the fixed segment, especially in the posterior edge of the superior endplate. Conclusion: In this study, long-segment posterior fixation (LSPF) provided with the greatest stability of fixed segment after fixation, while cortical bone screw fixation (CBT) provided with the smallest stability. Cement-augmented pedicle screw-rod fixation (CAPS) and combined using cortical bone screw and pedicle screw fixation (CBT-PS) provided with the moderate stability. CBT-PS exhibited superiority in resistance of rotational torsion for using multiple connecting rods. CAPS and CBT-PS maybe biomechanically superior options for the surgical treatment of burst TL fractures in osteoporotic patients.

9.
Int J Bioprint ; 9(5): 767, 2023.
Article in English | MEDLINE | ID: mdl-37457937

ABSTRACT

Mesoporous bioglass (MBG) with excellent osteointegration, osteoinduction, and biodegradability is a promising material for bone regeneration. However, its clinical application is hindered by complex processing and a lack of personalization, low mechanical strength, and uncontrollable degradation rate. In this study, we developed a double-bond-functionalized photocurable mesoporous bioglass (PMBG) sol that enabled ultrafast photopolymerization within 5 s. By further integrating nanosized tricalcium phosphate (TCP) particles through three-dimensional (3D) printing technology, we fabricated personalized and highly porous PMBG/TCP biphasic scaffolds. The mechanical properties and degradation behavior of the scaffolds were regulated by varying the amount of TCP doping. In vitro and in vivo experiments verified that PMBG/TCP scaffolds slowly released SiO44- and Ca2+, forming a vascularized bone regeneration microenvironment within the fully interconnected pore channels of the scaffold. This microenvironment promoted angiogenesis and accelerated bone tissue regeneration. Overall, this work demonstrates the solution to the problem of complex processing and lack of personalization in bioglass scaffolds, and the developed PMBG/TCP biphasic scaffold is an ideal material for bone regeneration applications with broad clinical prospects.

10.
Adv Healthc Mater ; 12(25): e2300292, 2023 10.
Article in English | MEDLINE | ID: mdl-37354129

ABSTRACT

Bone defect repair remains a major clinical challenge that requires the construction of scaffolds that can regulate bone homeostasis. In this study, a photo-cured mesoporous bioactive glass (PMBG) precursor is developed as a tricalcium phosphate (TCP) agglomerant to obtain a double-phase PMBG/TCP scaffold via 3D printing. The scaffold exhibits multi-scale porous structures and large surface areas, making it a suitable carrier for the loading of parathyroid hormone (PTH) (1-34), which is used for the treatment of osteoporosis. In vitro and in vivo results demonstrate that PMBG/TCP scaffolds coordinated with PTH (1-34) can regulate bone homeostasis in a bidirectional manner to facilitate bone formation and inhibit bone resorption. Furthermore, bidirectional regulation of bone homeostasis by PTH (1-34) is achieved by inhibiting fibrogenic activation protein (FAP). Thus, PMBG/TCP scaffolds coordinated with PTH (1-34) are viable materials with considerable potential for application in the field of bone regeneration and provide an excellent solution for the design and development of clinical materials.


Subject(s)
Parathyroid Hormone , Tissue Scaffolds , Parathyroid Hormone/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Printing, Three-Dimensional
11.
Biomater Sci ; 11(11): 3813-3827, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37052182

ABSTRACT

Cancer is a severe threat to human life and health and represents the main cause of death globally. Drug therapy is one of the primary means of treating cancer; however, most anticancer medications do not proceed beyond preclinical testing because the conditions of actual human tumors are not effectively mimicked by traditional tumor models. Hence, bionic in vitro tumor models must be developed to screen for anticancer drugs. Three-dimensional (3D) bioprinting technology can produce structures with built-in spatial and chemical complexity and models with accurately controlled structures, a homogeneous size and morphology, less variation across batches, and a more realistic tumor microenvironment (TME). This technology can also rapidly produce such models for high-throughput anticancer medication testing. This review describes 3D bioprinting methods, the use of bioinks in tumor models, and in vitro tumor model design strategies for building complex tumor microenvironment features using biological 3D printing technology. Moreover, the application of 3D bioprinting in vitro tumor models in drug screening is also discussed.


Subject(s)
Bioprinting , Neoplasms , Humans , Bioprinting/methods , Drug Evaluation, Preclinical , Tumor Microenvironment , Neoplasms/drug therapy , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
12.
J Cardiothorac Surg ; 18(1): 61, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747271

ABSTRACT

BACKGROUND: Rib fractures are a common injury in trauma. Potential complications include pain, pneumonia, respiratory failure, disability, and death. Surgical stabilization of rib fractures (SSRF) has become an available treatment option, and complete video-assisted thoracoscopic surgery (VATS) for SSRF is gradually accepted because of minimally invasive and pain relief. To our knowledge, complete uni-port VATS for SSRF has not yet been reported. CASE PRESENTATION: A 53-year-old man accidentally fell off a three-meter high scaffolding while working resulting in severe chest pain and shortness of breath. He was found with left 7th through 11th rib fractures with a pulmonary contusion from computed tomography (CT). A 4 cm incision was made in the 7th intercostal space in the midaxillary line, and complete uni-port VATS for SSRF were operated. The patient's pain was significantly relieved after the operation, and the scar was tiny and unapparent. CONCLUSIONS: Complete uni-port VATS for SSRF is a novel and modificatory method of operation with the benefit of minimal invasion, meanwhile, intrathoracic injuries could be treated at the same time. Further study is warranted.


Subject(s)
Rib Fractures , Thoracic Wall , Male , Humans , Middle Aged , Rib Fractures/surgery , Rib Fractures/complications , Thoracic Surgery, Video-Assisted/methods , Fracture Fixation/methods , Pain , Retrospective Studies
13.
Int J Nanomedicine ; 18: 307-322, 2023.
Article in English | MEDLINE | ID: mdl-36700146

ABSTRACT

Background: Successful treatment of infectious bone defect remains a major challenge in the orthopaedic field. At present, the conventional treatment for infectious bone defects is surgical debridement and long-term systemic antibiotic use. It is necessary to develop a new strategy to achieve effective bone regeneration and local anti-infection for infectious bone defects. Methods: Firstly, vancomycin / poly (lactic acid-glycolic acid) sustained release microspheres (VAN/PLGA-MS) were prepared. Then, through the dual-nozzle 3D printing technology, VAN/PLGA-MS was uniformly loaded into the pores of nano-hydroxyapatite (n-HA) and polylactic acid (PLA) scaffolds printed in a certain proportion, and a composite scaffold (VAN/MS-PLA/n-HA) was designed, which can not only promote bone repair but also resist local infection. Finally, the performance of the composite scaffold was evaluated by in vivo and in vitro biological evaluation. Results: The in vitro release test of microspheres showed that the release of VAN/PLGA-MS was relatively stable from the second day, and the average daily release concentration was about 15.75 µg/mL, which was higher than the minimum concentration specified in the guidelines. The bacteriostatic test in vitro showed that VAN/PLGA-MS had obvious inhibitory effect on Staphylococcus aureus ATCC-29213. Biological evaluation of VAN/MS-PLA/n-HA scaffolds in vitro showed that it can promote the proliferation of adipose stem cells. In vivo biological evaluation showed that VAN/MS-PLA/n-HA scaffold could significantly promote bone regeneration. Conclusion: Our research shows that VAN/MS-PLA/n-HA scaffolds have satisfying biomechanical properties, effectively inhibit the growth of Staphylococcus aureus, with good biocompatibility, and effectiveness on repairing bone defects. The VAN/MS-PLA/n-HA scaffold provide the clinic with an application prospect in bone tissue engineering.


Subject(s)
Durapatite , Vancomycin , Durapatite/pharmacology , Vancomycin/pharmacology , Tissue Scaffolds , Microspheres , Delayed-Action Preparations/pharmacology , Bone Regeneration , Polyesters/pharmacology , Printing, Three-Dimensional , Osteogenesis
14.
Front Bioeng Biotechnol ; 10: 1039117, 2022.
Article in English | MEDLINE | ID: mdl-36394003

ABSTRACT

Treating critical-size bone defects beyond the body's self-healing capacity is a challenging clinical task. In this study, we investigate the effect of concentrate growth factors (CGFs) loaded Poloxamer 407 hydrogel on the viability and osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and reconstruction of critical-size bone defects. In vitro, this CGFs-loaded thermosensitive hydrogel can significantly promote proliferation, maintain cell viability, and induce osteogenic differentiation of BMSCs by up-regulating the mineralization and alkaline phosphatase (ALP) activity, as well as gene markers, including runt-related transcription factor-2 (Runx-2), type I collagen (Col-1), osteocalcin (OCN), as well as osteopontin (OPN). In vivo, Micro-CT radiography analysis and histological detection demonstrated that the CGFs-loaded hydrogel significantly induced bone healing and reconstructed the medullary cavity structure in critical-size bone defect models. In conclusion, this strategy of transplantation of CGFs-loaded hydrogel promoted bone regeneration and prevented bone nonunion, so as to provide basis for clinical treatment for repairing critical-size bone defects.

15.
PeerJ ; 10: e14293, 2022.
Article in English | MEDLINE | ID: mdl-36340196

ABSTRACT

Background: Species of Broussonetia (family Moraceae) are commonly used to make textiles and high-grade paper. The distribution of Broussonetia papyrifera L. is considered to be related to the spread and location of humans. The complete chloroplast (cp) genomes of B. papyrifera, Broussonetia kazinoki Sieb., and Broussonetia kaempferi Sieb. were analyzed to better understand the status and evolutionary biology of the genus Broussonetia. Methods: The cp genomes were assembled and characterized using SOAPdenovo2 and DOGMA. Phylogenetic and molecular dating analysis were performed using the concatenated nucleotide sequences of 35 species in the Moraceae family and were based on 66 protein-coding genes (PCGs). An analysis of the sequence divergence (pi) of each PCG among the 35 cp genomes was conducted using DnaSP v6. Codon usage indices were calculated using the CodonW program. Results: All three cp genomes had the typical land plant quadripartite structure, ranging in size from 160,239 bp to 160,841 bp. The ribosomal protein L22 gene (RPL22) was either incomplete or missing in all three Broussonetia species. Phylogenetic analysis revealed two clades. Clade 1 included Morus and Artocarpus, whereas clade 2 included the other seven genera. Malaisia scandens Lour. was clustered within the genus Broussonetia. The differentiation of Broussonetia was estimated to have taken place 26 million years ago. The PCGs' pi values ranged from 0.0005 to 0.0419, indicating small differences within the Moraceae family. The distribution of most of the genes in the effective number of codons plot (ENc-plot) fell on or near the trend line; the slopes of the trend line of neutrality plots were within the range of 0.0363-0.171. These results will facilitate the identification, taxonomy, and utilization of the Broussonetia species and further the evolutionary studies of the Moraceae family.


Subject(s)
Broussonetia , Genome, Chloroplast , Moraceae , Humans , Broussonetia/genetics , Phylogeny , Moraceae/genetics , Genome, Chloroplast/genetics , Biological Evolution
16.
Arch Virol ; 167(2): 687-690, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34985553

ABSTRACT

A cryptic virus, named mulberry cryptic virus 1 (MuCV1), was identified in a mulberry (Morus alba) transcriptome dataset and confirmed using RACE methods. The genome of MuCV1 is composed of two double-stranded RNAs, 1605 bp and 1627 bp in size, encoding an RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. The 5'-AGAAUU-3' sequence in the 5' untranslated region was conserved in the two dsRNAs. Sequence comparisons and phylogenetic analysis based on RdRp and CP sequences both indicated that MuCV1 is a deltapartitivirus (family Partitiviridae).


Subject(s)
Morus , RNA Viruses , Genome, Viral , Open Reading Frames , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded , RNA, Viral/genetics , Sequence Analysis, DNA
17.
Orthop Surg ; 14(3): 522-529, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35098677

ABSTRACT

OBJECTIVE: To evaluate the placement feasibility and safety of the newly designed retropharyngeal reduction plate by cadaveric test and to perform morphometric trajectory analysis. METHODS: The five cadaveric specimens with intact atlantoaxial joint were enrolled in this study. They were used for simulating the placement process and evaluating the placement feasibility of the retropharyngeal reduction plate. The atlantoaxial dislocation (AAD) of five cadaveric specimens were obtained by proper external force after dissecting ligaments. The retropharyngeal reduction plate was placed on atlantoaxial joint of cadaveric specimens. The X-ray and three-dimensional (3D) spiral CT were used for evaluating the placement safety of retropharyngeal reduction plate. The DICOM data was obtained after 3D spiral CT scanning for the morphometric trajectory analysis. RESULTS: The reduction plates were successfully placed on the atlantoaxial joint of five cadaveric specimens through the retropharyngeal approach, respectively. The X-ray and 3D spiral CT showed the accurate screw implantation and satisfying plate placement. The length of the left/right atlas screw trajectory (L/RAT) was, respectively, 1.73 ± 0.01 cm (LAT) and 1.71 ± 0.02 cm (RAT). The length of odontoid screw trajectory (OST) was 1.38 ± 0.02 cm. The length of the left/right axis screw trajectory (L/RAXT) was, respectively, 1.67 ± 0.02 cm (LAXT) and 1.67 ± 0.01 cm (RAXT). There was no statistical significance between left side and right side in terms of AT and AXT (P > 0.05). The angles of atlas screw trajectory angle (ASTA), axis screw trajectory angle (AXSTA), and odontoid screw trajectory angle (OSTA) were 38.04° ± 2.03°, 56.92° ± 2.66°, and 34.78° ± 2.87°, respectively. CONCLUSION: The cadaveric test showed that the retropharyngeal reduction plate is feasible to place on the atlantoaxial joint, which is also a safe treatment choice for atlantoaxial dislocation. The meticulous preoperative planning of screw trajectory based on individual differences was also vital to using this technique.


Subject(s)
Atlanto-Axial Joint , Joint Dislocations , Spinal Fusion , Atlanto-Axial Joint/diagnostic imaging , Atlanto-Axial Joint/surgery , Bone Plates , Bone Screws , Cadaver , Humans , Joint Dislocations/diagnostic imaging , Joint Dislocations/surgery , Tomography, X-Ray Computed
18.
ACS Omega ; 7(51): 48282-48290, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591198

ABSTRACT

Capacitive deionization (CDI) is an environmentally friendly, energy efficient, and low cost water purification technique in comparison with other conventional techniques, and it has attracted considerable attention in recent years. Here, we use biomass byproduct okara as the starting material to fabricate a boron and nitrogen codoped hierarchically porous carbon (BNC) with ultrahigh heteroatom contents and abundant in-plane nanoholes for CDI application. With the interconnected hierarchical porous structure, the BNC not only exhibits a large surface area (647.0 m3 g-1) for the adsorption of ions but also offers abundant ion transport channels to access the entire internal surface. Meanwhile, the ultrahigh dopants' content of B (11.9 at%) and N (14.8 at%) further gives rise to the increased surface polarity and enhanced capacitance for BNC. Owing to these favorable properties, BNC exhibits top-level salt adsorption capacity (21.5 mg g-1) and charge efficiency (59.5%) at the initial NaCl concentration of ∼500 mg L-1. Moreover, we performed first-principle simulations to explore the different effects between N-doping and N,B-codoping on the capacitive property, which indicate that the boron and nitrogen codoping of carbon can largely increase the quantum capacitance over the double layer capacitance. The results of this work suggest a promising prospect for the BNC material in practical CDI application.

19.
Small ; 17(40): e2008200, 2021 10.
Article in English | MEDLINE | ID: mdl-34496143

ABSTRACT

The combination of good stability, biocompatibility, and high mechanical strength is attractive for bio-related material applications, but it remains challenging to simultaneously achieve these properties in a single, ionically conductive material. Here a "wood" ionic cable, made of aligned wood nanofibrils, demonstrating a combination of biocompatibility, high mechanical strength, high ionic conductivity, and excellent stability is reported. The wood ionic cable possesses excellent flexibility and exhibits high tensile strength up to 260 MPa (in the dry state) and ≈80 MPa (in the wet state). The nanochannels within the highly aligned cellulose nanofibrils and the presence of negative charges on the surfaces of these nanochannels, originating from the cellulose hydroxyl groups, provide new opportunities for ion regulation at low salt concentrations. Ion regulation in turn enables the wood ionic cable to have unique nanofluidic ionic behaviors. The Na+ ion conductivity of the wood ionic cable can reach up to ≈1.5 × 10-4 S cm-1 at low Na+ ion concentration (1.0 × 10-5 mol L-1 ), which is an order of magnitude higher than that of bulk NaCl solution at the same concentration. The scalable, biocompatible wood ionic cable enables novel ionic device designs for potential ion-regulation applications.


Subject(s)
Cellulose , Wood , Hydrogels , Ions , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...