Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Lett ; 598: 217113, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39009068

ABSTRACT

Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Liver Neoplasms/secondary , Liver Neoplasms/immunology , Tumor Microenvironment/immunology , Tumor Escape , Animals
2.
Sci Rep ; 12(1): 22207, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564423

ABSTRACT

The cellulose of carex meyeriana kunth (CMKC) was used as raw material, and the spinning solution was prepared by combining with polyacrylonitrile (PAN). The nano-cellulose fiber of carex meyeriana kunth (CMKN) was prepared by electrospinning. Used to remove methylene blue dye (MB) in aqueous solution. In the electrospinning experiment, the addition of CMKC was in the range of 5% ~ 25%, the feed rate of spinning parameters was set in the range of 0.2 ~ 1.0 mL/h, the distance from the needle tip to the collecting plate was in the range of 10 ~ 25 cm, and the voltage was changed in the range of 15 ~ 25 kV. The obtained CMKN was characterized by scanning electron microscope, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The MB removal rate was evaluated in the dye removal experiment, and the effects of CMKN on MB removal rate under the factors of CMKC dosage, temperature, shock time and MB initial concentration were discussed. The optimum process conditions were determined by response surface methodology. The results show that the prepared fibers are superfine fibers with nanometer diameter, and the spun nanofibers have smooth surface, high overall orientation and strong uniformity. The adsorption kinetics of prepared CMKN accords with quasi-second order model, and the adsorption isotherm accords with Langmuir model. The maximum dye removal rate of CMKN is 63.24%.


Subject(s)
Carex Plant , Nanofibers , Water Pollutants, Chemical , Nanofibers/chemistry , Temperature , Cellulose , Methylene Blue/chemistry , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Article in English | MEDLINE | ID: mdl-35886662

ABSTRACT

Human muscle tissue undergoes dynamic changes in gene expression during exercise, and the dynamics of these genes are correlated with muscle adaptation to exercise. A database of gene expression changes in human muscle before and after exercise was established for data mining. A web-based searchable database, Exe-muscle, was developed using microarray sequencing data, which can help users to retrieve gene expression at different times. Search results provide a complete description of target genes or genes with specific expression patterns. We can explore the molecular mechanisms behind exercise science by studying the changes in muscle gene expression over time before and after exercise. Based on the high-throughput microarray data before and after human exercise, a human pre- and post-exercise database was created using web-based database technology, which researchers can use or share their gene expression data. The Exe-muscle database is accessible online.


Subject(s)
Physical Conditioning, Animal , Animals , Gene Expression , Humans , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL