Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 303, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379890

ABSTRACT

Light, a crucial environmental signal, is involved in the regulation of secondary metabolites. To understand the mechanism by which light influences carotenoid metabolism, grapefruits were bagged with four types of light-transmitting bags that altered the transmission of solar light. We show that light-transmitting bagging induced changes in carotenoid metabolism during fruit ripening. Compared with natural light, red light (RL)-transmittance treatment significantly increases the total carotenoid content by 62%. Based on weighted gene co-expression network analysis (WGCNA), 'blue' and 'turquoise' modules are remarkably associated with carotenoid metabolism under different light treatment (p < 0.05). Transcriptome analysis identifies transcription factors (TFs) bHLH128, NAC2-like/21/72, MYB-like, AGL11/AGL61, ERF023/062, WRKY20, SBPlike-7/13 as being involved in the regulation of carotenoid metabolism in response to RL. Under RL treatment, these TFs regulate the accumulation of carotenoids by directly modulating the expression of carotenogenic genes, including GGPPS2, PDS, Z-ISO, ZDS2/7, CRTISO3, CYP97A, CHYB, ZEP2, CCD1-2. Based on these results, a network of the regulation of carotenoid metabolism by light in citrus fruits is preliminarily proposed. These results show that RL treatments have great potential to improve coloration and nutritional quality of citrus fruits.


Subject(s)
Citrus paradisi , Carotenoids/metabolism , Citrus paradisi/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Light
2.
Front Plant Sci ; 12: 763139, 2021.
Article in English | MEDLINE | ID: mdl-34868159

ABSTRACT

Short-chain esters derived from fatty acid contribute to the characteristic flavor of apricot fruit, and the biosynthesis of these compounds in fruit is catalyzed by alcohol acyltransferase (AAT). In this work, we investigated the AAT gene family via genome-wide scanning, and three AAT loci were identified in different linkage groups (LGs), with PaAAT1 (PARG22907m01) in LG7, PaAAT2 (PARG15279m01) in LG4, and PaAAT3 (PARG22697m01) in LG6. Phylogenetic analysis showed that PaAAT1 belongs to clade 3, while PaAAT2 and PaAAT3 belong to clade 1 and clade 2, respectively. In contrast, the three AAT genes present different expression patterns. Only PaAAT1 exhibited distinct patterns of fruit-specific expression, and the expression of PaAAT1 sharply increased during fruit ripening, which is consistent with the abundance of C4-C6 esters such as (E)-2-hexenyl acetate and (Z)-3-hexenyl acetate. The transient overexpression of PaAAT1 in Katy (KT) apricot fruit resulted in a remarkable decrease in hexenol, (E)-2-hexenol, and (Z)-3-hexenol levels while significantly increasing the corresponding acetate production (p < 0.01). A substrate assay revealed that the PaAAT1 protein enzyme can produce hexenyl acetate, (E)-2-hexenyl acetate, and (Z)-3-hexenyl acetate when C6 alcohols are used as substrates for the reaction. Taken together, these results indicate that PaAAT1 plays a crucial role in the production of C6 esters in apricot fruit during ripening.

3.
J Exp Bot ; 63(1): 341-54, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21994170

ABSTRACT

Loquat (Eriobotrya japonica Lindl.) can be sorted into red- and white-fleshed cultivars. The flesh of Luoyangqing (LYQ, red-fleshed) appears red-orange because of a high content of carotenoids while the flesh of Baisha (BS, white-fleshed) appears ivory white due to a lack of carotenoid accumulation. The carotenoid content in the peel and flesh of LYQ was approximately 68 µg g(-1) and 13 µg g(-1) fresh weight (FW), respectively, and for BS 19 µg g(-1) and 0.27 µg g(-1) FW. The mRNA levels of 15 carotenogenesis-related genes were analysed during fruit development and ripening. After the breaker stage (S4), the mRNA levels of phytoene synthase 1 (PSY1) and chromoplast-specific lycopene ß-cyclase (CYCB) were higher in the peel, and CYCB and ß-carotene hydroxylase (BCH) mRNAs were higher in the flesh of LYQ, compared with BS. Plastid morphogenesis during fruit ripening was also studied. The ultrastructure of plastids in the peel of BS changed less than in LYQ during fruit development. Two different chromoplast shapes were observed in the cells of LYQ peel and flesh at the fully ripe stage. Carotenoids were incorporated in the globules in chromoplasts of LYQ and BS peel but were in a crystalline form in the chromoplasts of LYQ flesh. However, no chromoplast structure was found in the cells of fully ripe BS fruit flesh. The mRNA level of plastid lipid-associated protein (PAP) in the peel and flesh of LYQ was over five times higher than in BS peel and flesh. In conclusion, the lower carotenoid content in BS fruit was associated with the lower mRNA levels of PSY1, CYCB, and BCH; however, the failure to develop normal chromoplasts in BS flesh is the most convincing explanation for the lack of carotenoid accumulation. The expression of PAP was well correlated with chromoplast numbers and carotenoid accumulation, suggesting its possible role in chromoplast biogenesis or interconversion of loquat fruit.


Subject(s)
Carotenoids/metabolism , Eriobotrya/genetics , Gene Expression Regulation, Plant , Plastids , Base Sequence , DNA Primers , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...