Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Angew Chem Int Ed Engl ; : e202408558, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842471

ABSTRACT

Synthetic structures mimicking the transport function of natural ion channel proteins have a wide range of applications, including therapeutic treatments, separation membranes, sensing, and biotechnologies. However, the development of polymer-based artificial channels has been hampered due to the limitation on available models. In this study, we demonstrate the great potential of bottlebrush polymers as accessible and versatile molecular scaffolds for developing efficient artificial ion channels. Adopting the bottlebrush configuration enhanced ion transport activity of the channels compared to their linear analogs. Matching the structure of lipid bilayers, the bottlebrush channel with a hydrophilic-hydrophobic-hydrophilic triblock architecture exhibited the highest activity among the series. Functionalized with urea groups, these channels displayed high anion selectivity. Additionally, we illustrated that the transport properties could be fine-tuned by modifying the chemistry of ion binding sites. This work not only highlights the importance of polymer topology control in channel design, but also reveals the great potential for further developing bottlebrush channels with customized features and diverse functionalities.

2.
BMC Anesthesiol ; 24(1): 99, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475699

ABSTRACT

BACKGROUND: The use of nonintubated video-assisted thoracoscopic surgery (NI-VATS) has been increasingly reported to yield favourable outcomes. However, this technology has not been routinely used because its advantages and safety have not been fully confirmed. The aim of this study was to assess the safety and feasibility of nonintubated spontaneous ventilation (NI-SV) anesthesia compared to intubated mechanical ventilation (I-MV) anesthesia in VATS by evaluating of perioperative complications and practitioners' workloads. METHODS: Patients who underwent uniportal VATS were randomly assigned at a 1:1 ratio to receive NI-SV or I-MV anesthesia. The primary outcome was the occurrence of intraoperative airway intervention events, including transient MV, conversion to intubation and repositioning of the double-lumen tube. The secondary outcomes included perioperative complications and modified National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores from anesthesiologists and surgeons. RESULTS: Thirty-five patients in each group were enrolled in the intention-to-treat analysis. The incidence of intraoperative airway intervention events was greater in the NI-SV group than in the I-MV group (12 [34.3%] vs. 3 [8.6%]; OR = 0.180; 95% CI = 0.045-0.710; p = 0.009). No significant difference was found in the postoperative pulmonary complications between the groups (p > 0.05). The median of the anesthesiologists' overall NASA-TLX score was 37.5 (29-52) when administering the NI-SV, which was greater than the 25 (19-34.5) when the I-MV was administered (p < 0.001). The surgeons' overall NASA-TLX score was comparable between the two ventilation strategies (28 [21-38.5] vs. 27 [20.5-38.5], p = 0.814). CONCLUSION: The NI-SV anesthesia was feasible for VATS in the selected patients, with a greater incidence of intraoperative airway intervention events than I-MV anesthesia, and with more surgical effort required by anesthesiologists. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2200055427. https://www.chictr.org.cn/showproj.html?proj=147872 was registered on January 09, 2022.


Subject(s)
Anesthesia , Thoracic Surgery, Video-Assisted , Humans , Respiration, Artificial/adverse effects , Workload , Pilot Projects , Anesthesia/adverse effects , Postoperative Complications/epidemiology
3.
Angew Chem Int Ed Engl ; 63(19): e202316717, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38477147

ABSTRACT

The electrolytes for lithium metal batteries (LMBs) are plagued by a low Li+ transference number (T+) of conventional lithium salts and inability to form a stable solid electrolyte interphase (SEI). Here, we synthesized a self-folded lithium salt, lithium 2-[2-(2-methoxy ethoxy)ethoxy]ethanesulfonyl(trifluoromethanesulfonyl) imide (LiETFSI), and comparatively studied with its structure analogue, lithium 1,1,1-trifluoro-N-[2-[2-(2-methoxyethoxy)ethoxy)]ethyl]methanesulfonamide (LiFEA). The special anion chemistry imparts the following new characteristics: i) In both LiFEA and LiETFSI, the ethylene oxide moiety efficiently captures Li+, resulting in a self-folded structure and high T+ around 0.8. ii) For LiFEA, a Li-N bond (2.069 Å) is revealed by single crystal X-ray diffraction, indicating that the FEA anion possesses a high donor number (DN) and thus an intensive interphase "self-cleaning" function for an ultra-thin and compact SEI. iii) Starting from LiFEA, an electron-withdrawing sulfone group is introduced near the N atom. The distance of Li-N is tuned from 2.069 Šin LiFEA to 4.367 Šin LiETFSI. This alteration enhances ionic separation, achieves a more balanced DN, and tunes the self-cleaning intensity for a reinforced SEI. Consequently, the fast charging/discharging capability of LMBs is progressively improved. This rationally tuned anion chemistry reshapes the interactions among Li+, anions, and solvents, presenting new prospects for advanced LMBs.

4.
J Phys Chem B ; 128(16): 3953-3963, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38520347

ABSTRACT

This study explores the potential of the dumbbell solvent as a minimal model for understanding electrolyte solutions in polar solvents. Our investigation involves a comparative analysis of the dumbbell model and the Stockmayer model, focusing on ion solvation and ion-ion correlations. We examine electrolytes containing symmetric monovalent salts dissolved in polar solvents while varying the ion density and solvent polarity. Both models predict an augmented solvent coordination number around ions as the solvent polarity increases, with the dumbbell solvent displaying a more pronounced effect. Notably, radial distribution functions (RDFs) between solvent and ions yield differing trends; Stockmayer models exhibit a nonmonotonic relationship due to strong dipole-dipole interactions at higher polarity, while RDFs for ions and dumbbell solvents consistently rise. In response to increased solvent polarity, Stockmayer solvents within the ion's solvation shell undergo continuous dipole orientation shifts, whereas the dumbbell solvent predominantly adopts pointing-away dipole orientations, diminishing pointing-to orientations. This underscores the significance of the interplay between the solvent molecular orientation and dipole rotation. Both models qualitatively predict ion pairing and clustering behaviors across varying solvent dipole strengths and salt concentrations. The Stockmayer solvent generally provides stronger electrostatic screening than the dumbbell solvent due to its neglect of the coupling between molecular orientation and dipole rotation. What's more, at a high dipole moment regime, ion-ion correlations in Stockmayer solvent can become stronger with increasing dipole moment due to stronger solvent-solvent correlations. This study underscores the effectiveness of the dumbbell solvent model in systematically elucidating the fundamental principles governing electrolytes and offers potential applications in the rational design of electrolyte systems.

5.
J Phys Condens Matter ; 36(23)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38387097

ABSTRACT

Lithium-metal batteries, owing to their remarkable energy density, represent a promising solution for future energy storage needs. However, the widespread adoption of lithium-metal batteries has been impeded by the inherent instability that exists between lithium metal and traditional liquid lithium electrolytes, initially designed for graphite anodes in lithium-ion batteries. Recent insights underscore the efficacy of electrolyte engineering as a strategic avenue to realize the potential of lithium-metal batteries. A notable approach involves the fluorination of solvent molecules, particularly those of the ether class. Nonetheless, a comprehensive understanding of the various factors governing solvent molecular design remains elusive. Here, we examine four solvents derived from 1,2-dimethoxylethane (DME) via molecular dynamics simulation. These solvents are engineered with the introduction of additional alkyl groups or through fluorination. We particularly scrutinize two critical facets: steric effects, arising from the incorporation of bulkier alkyl chains, and electronic effects, originating from fluorination. Our inquiry delves deeply into the stability, ion transport characteristics, and solvation behavior exhibited by these five distinct solvents. Our study underscores the profound impact of adjusting the steric and electronic attributes of solvent molecules on Li+solvation behavior. This, in turn, influences the coordination strength and the mode of association between Li+and solvation sites within the first solvation shell, providing key insights into the disparities in ion transport properties within electrolytes.

6.
Nat Mater ; 23(4): 570-576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38297141

ABSTRACT

Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The µ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.

7.
Natl Sci Rev ; 10(12): nwad260, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37954195

ABSTRACT

A biological potassium channel is >1000 times more permeable to K+ than to Na+ and exhibits a giant permeation rate of ∼108 ions/s. It is a great challenge to construct artificial potassium channels with such high selectivity and ion conduction rate. Herein, we unveil a long-overlooked structural feature that underpins the ultra-high K+/Na+ selectivity. By carrying out massive molecular dynamics simulation for ion transport through carbonyl-oxygen-modified bi-layer graphene nanopores, we find that the twisted carbonyl rings enable strict potassium selectivity with a dynamic K+/Na+ selectivity ratio of 1295 and a K+ conduction rate of 3.5 × 107 ions/s, approaching those of the biological counterparts. Intriguingly, atomic trajectories of K+ permeation events suggest a dual-ion transport mode, i.e. two like-charged potassium ions are successively captured by the nanopores in the graphene bi-layer and are interconnected by sharing one or two interlayer water molecules. The dual-ion behavior allows rapid release of the exiting potassium ion via a soft knock-on mechanism, which has previously been found only in biological ion channels. As a proof-of-concept utilization of this discovery, we propose a novel way for ionic power generation by mixing KCl and NaCl solutions through the bi-layer graphene nanopores, termed potassium-permselectivity enabled osmotic power generation (PoPee-OPG). Theoretically, the biomimetic device achieves a very high power density of >1000 W/m2 with graphene sheets of <1% porosity. This study provides a blueprint for artificial potassium channels and thus paves the way toward next-generation electric-eel-mimetic ionic power generation.

8.
Nano Lett ; 23(11): 5194-5200, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37220138

ABSTRACT

Solid polymer electrolytes (SPEs) are attractive for next-generation lithium metal batteries but still suffer from low ionic conductivity. Nanostructured materials offer design concepts for SPEs with better performance. Using molecular dynamics simulation, we examine SPEs under nanoscale confinement, which has been demonstrated to accelerate the transport of neutral molecules such as water. Our results show that while ion diffusion indeed accelerates by more than 2 orders of magnitude as the channel diameter decreases from 15 to 2 nm, the ionic conductivity does not increase significantly in parallel. Instead, the ionic conductivity shows a nonmonotonic variation, with an optimal value above, but on the same order as, its bulk counterparts. This trend is due to enhanced ion association with decreasing channel size, which reduces the number of effective charge carriers. This effect competes with accelerated ion diffusion, leading to the nonmonotonicity in ion conductivity.

9.
Nano Lett ; 23(9): 4014-4022, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37079652

ABSTRACT

Lithium metal is widely regarded as the "ultimate" anode for energy-dense Li batteries, but its high reactivity and delicate interface make it prone to dendrite formation, limiting its practical use. Inspired by self-assembled monolayers on metal surfaces, we propose a facile yet effective strategy to stabilize Li metal anodes by creating an artificial solid electrolyte interphase (SEI). Our method involves dip-coating Li metal in MPDMS to create an SEI layer that is rich in inorganic components, allowing uniform Li plating/stripping under a low overpotential over 500 cycles in carbonate electrolytes. In comparison, pristine Li metal shows a rapid increase in overpotential after merely 300 cycles, leading to failure soon after. Molecular dynamics simulations demonstrate that this uniform artificial SEI suppresses Li dendrite formation. We further demonstrated its enhanced stability pairing with LiFePO4 and LiNi1-x-yCoxMnyO2 cathodes, highlighting the proposed strategy as a promising solution for practical Li metal batteries.

10.
Plant Cell Rep ; 42(3): 487-504, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680639

ABSTRACT

KEY MESSAGE: GhSCL13-2A, a member of the PAT1 subfamily in the GRAS family, positively regulates cotton resistance to Verticillium dahliae by mediating the jasmonic acid and salicylic acid signaling pathways and accumulation of reactive oxygen species. Verticillium wilt (VW) is a devastating disease of upland cotton (Gossypium hirsutum) that is primarily caused by the soil-borne fungus Verticillium dahliae. Scarecrow-like (SCL) proteins are known to be involved in plant abiotic and biotic stress responses, but their roles in cotton defense responses are still unclear. In this study, a total of 25 GhPAT1 subfamily members in the GRAS family were identified in upland cotton. Gene organization and protein domain analysis showed that GhPAT1 members were highly conserved. GhPAT1 genes were widely expressed in various tissues and at multiple developmental stages, and they were responsive to jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signals. Furthermore, GhSCL13-2A was induced by V. dahliae infection. V. dahliae resistance was enhanced in Arabidopsis thaliana by ectopic overexpression of GhSCL13-2A, whereas cotton GhSCL13-2A knockdowns showed increased susceptibility. Levels of reactive oxygen species (ROS) and JA were also increased and SA content was decreased in GhSCL13-2A knockdowns. At the gene expression level, PR genes and SA signaling marker genes were down-regulated and JA signaling marker genes were upregulated in GhSCL13-2A knockdowns. GhSCL13-2A was shown to be localized to the cell membrane and the nucleus. Yeast two-hybrid and luciferase complementation assays indicated that GhSCL13-2A interacted with GhERF5. In Arabidopsis, V. dahliae resistance was enhanced by GhERF5 overexpression; in cotton, resistance was reduced in GhERF5 knockdowns. This study revealed a positive role of GhSCL13-2A in V. dahliae resistance, establishing it as a strong candidate gene for future breeding of V. dahliae-resistant cotton cultivars.


Subject(s)
Ascomycota , Verticillium , Gossypium/metabolism , Reactive Oxygen Species/metabolism , Plant Breeding , Verticillium/physiology , Salicylic Acid/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Phys Chem Chem Phys ; 25(1): 297-303, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477024

ABSTRACT

For over decades, nematic liquid crystals have been recognized as highly fluidic materials that respond to electric field on the millisecond scale. In contrast to traditional nematics with fast responsivity, we herein report nontrivial ultraslow electric-driven dynamics in bent-shaped nematic materials. Varying the alkyl chain spacers of bent-shaped cyanobiphenyl dimers (COOm and OCOm) shows a 'transition' in the dynamics behavior between the bent-dimeric and bent-core materials. Interestingly, with short alkyl chain spacers, COO2 exhibits unexpected ultra-slow dynamic pathways, i.e., "quasi-static" electrohydrodynamic convection. A significant observation is that the on/off-electro-switching time of COO2 is 10 000 times higher than that of typical nematic materials, which is the largest value reported ever in the kilo-second range. In addition, the threshold voltage for inducing the reorientation of the nematic director for COO2 is higher than 5 V, which is uncommon in traditional N materials. These properties are distinct from those of traditional nematic materials and discussed in terms of dielectric constants and electrohydrodynamic convection.

12.
Front Immunol ; 13: 961796, 2022.
Article in English | MEDLINE | ID: mdl-35911673

ABSTRACT

Immunotherapy is one of the promising strategies in the treatment of oncology. Immune checkpoint inhibitors, as a type of immunotherapy, have no significant efficacy in the clinical treatment of patients with pMMR/MSS/MSI-L mCRC alone. Therefore, there is an urgent need to find combination therapies that can improve the response rate of immune checkpoint inhibitors. Oncolytic viruses are a new class of cancer drugs that, in addition to directly lysing tumor cells, can facilitate the action of immune checkpoint inhibitors by modulating the tumor microenvironment and transforming "cold" tumors into "hot" ones. The combination of oncolytic viruses and immune checkpoint inhibitors is currently being used in several primary and clinical studies to treat tumors with exciting results. The combination of genetically modified "armed" OV with ICIs is expected to be one of the treatment options for pMMR/MSS/MSI-L mCRC. In this paper, we will analyze the current status of oncolytic viruses and ICIs available for the treatment of CRC. The feasibility of OV in combination with ICI for CRC will be discussed in terms of the mechanism of action of OV in treating tumors.


Subject(s)
Colorectal Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Microsatellite Instability , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Tumor Microenvironment
13.
Front Oncol ; 12: 943761, 2022.
Article in English | MEDLINE | ID: mdl-36033509

ABSTRACT

Objectives: The prognostic significance of acute lymphoblastic leukemia (ALL) patients with central nervous system leukemia (CNSL) at diagnosis is controversial. We aimed to determine the impact of CNSL at diagnosis on the clinical outcomes of childhood B-cell ALL in the South China Children's Leukemia Group (SCCLG). Methods: A total of 1,872 childhood patients were recruited for the study between October 2016 and July 2021. The diagnosis of CNSL depends on primary cytological examination of cerebrospinal fluid, clinical manifestations, and imaging manifestations. Patients with CNSL at diagnosis received two additional courses of intrathecal triple injections during induction. Results: The frequency of CNLS at the diagnosis of B-cell ALL was 3.6%. Patients with CNSL at diagnosis had a significantly higher mean presenting leukocyte count (P = 0.002) and poorer treatment response (P <0.05) compared with non-CNSL patients. Moreover, CNSL status was associated with worse 3-year event-free survival (P = 0.030) and a higher risk of 3-year cumulative incidence of relapse (P = 0.008), while no impact was observed on 3-year overall survival (P = 0.837). Multivariate analysis revealed that CNSL status at diagnosis was an independent predictor with a higher cumulative incidence of relapse (hazard ratio = 2.809, P = 0.016). Conclusion: CNSL status remains an adverse prognostic factor in childhood B-cell ALL, indicating that additional augmentation of CNS-directed therapy is warranted for patients with CNSL at diagnosis.

14.
Cell Oncol (Dordr) ; 45(3): 367-379, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35486320

ABSTRACT

BACKGROUND: Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism. METHODS: The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms. RESULTS: We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression. CONCLUSIONS: Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , NF-kappa B/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
15.
Front Oncol ; 12: 854798, 2022.
Article in English | MEDLINE | ID: mdl-35425700

ABSTRACT

Objective: Even though childhood acute lymphoblastic leukemia (ALL) has an encouraging survival rate in recent years, some patients are still at risk of relapse or even death. Therefore, we aimed to construct a nomogram to predict event-free survival (EFS) in patients with ALL. Method: Children with newly diagnosed ALL between October 2016 and July 2021 from 18 hospitals participating in the South China children's leukemia Group (SCCLG) were recruited and randomly classified into two subsets in a 7:3 ratio (training set, n=1187; validation set, n=506). Least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were adopted to screen independent prognostic factors. Then, a nomogram can be build based on these prognostic factors to predict 1-, 2-, and 3-year EFS. Concordance index (C-index), area under the curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the performance and clinical utility of nomogram. Result: The parameters that predicted EFS were age at diagnosis, white blood cell at diagnosis, immunophenotype, ETV6-RUNX1/TEL-AML1 gene fusion, bone marrow remission at day 15, and minimal residual disease at day 15. The nomogram incorporated the six factors and provided C-index values of 0.811 [95% confidence interval (CI) = 0.792-0.830] and 0.797 (95% CI = 0.769-0.825) in the training and validation set, respectively. The calibration curve and AUC revealed that the nomogram had good ability to predict 1-, 2-, and 3-year EFS. DCA also indicated that our nomogram had good clinical utility. Kaplan-Meier analysis showed that EFS in the different risk groups stratified by the nomogram scores was significant differentiated. Conclusion: The nomogram for predicting EFS of children with ALL has good performance and clinical utility. The model could help clinical decision-making.

16.
Nat Mater ; 21(4): 445-454, 2022 04.
Article in English | MEDLINE | ID: mdl-35039645

ABSTRACT

Designing a stable solid-electrolyte interphase on a Li anode is imperative to developing reliable Li metal batteries. Herein, we report a suspension electrolyte design that modifies the Li+ solvation environment in liquid electrolytes and creates inorganic-rich solid-electrolyte interphases on Li. Li2O nanoparticles suspended in liquid electrolytes were investigated as a proof of concept. Through theoretical and empirical analyses of Li2O suspension electrolytes, the roles played by Li2O in the liquid electrolyte and solid-electrolyte interphases of the Li anode are elucidated. Also, the suspension electrolyte design is applied in conventional and state-of-the-art high-performance electrolytes to demonstrate its applicability. Based on electrochemical analyses, improved Coulombic efficiency (up to ~99.7%), reduced Li nucleation overpotential, stabilized Li interphases and prolonged cycle life of anode-free cells (~70 cycles at 80% of initial capacity) were achieved with the suspension electrolytes. We expect this design principle and our findings to be expanded into developing electrolytes and solid-electrolyte interphases for Li metal batteries.


Subject(s)
Electric Power Supplies , Lithium , Electrodes , Electrolytes
17.
Front Nutr ; 9: 1086426, 2022.
Article in English | MEDLINE | ID: mdl-36712526

ABSTRACT

The gel formation ability of freshwater surimi is weak, resulting in its poor flavor and quality. Atmospheric cold plasma (ACP), a widely developed non-thermal processing technology in the food industry, is considered to have potential applications in maintaining and improving the flavor characteristics of surimi gels. In this study, the effect of ACP on snakehead surimi gels flavor at different treatment times was investigated by sensory evaluation and gas chromatography-ion mobility spectrometry (GC-IMS) analysis. The results showed that ACP could better maintain and improve the original appearance and tissue state characteristics of surimi gels, scoring about 1-2 points higher than the ACP-untreated group. GC-IMS analysis demonstrated the obvious difference in the volatile organic compounds (VOCs) among the treatment groups. Specifically, the samples treated for 120 s with ACP exhibited the most unique aroma characteristics, which probably related to the highest thiobarbituric acid reactive substances values (73.28 µmol MDA/kg sample). Meanwhile, the reduced TCA-soluble peptides content indicated that ACP could inhibit protein degradation to maintaining the tissue state and flavor characteristics of the surimi gels. In conclusion, the advantages of ACP treatment, such as little damage to nutrients, and maximum retention of original sensory properties, provide new ideas for its application in the flavor characteristics of the snakehead surimi gels.

18.
J Am Chem Soc ; 143(44): 18703-18713, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709034

ABSTRACT

1,2-Dimethoxyethane (DME) is a common electrolyte solvent for lithium metal batteries. Various DME-based electrolyte designs have improved long-term cyclability of high-voltage full cells. However, insufficient Coulombic efficiency at the Li anode and poor high-voltage stability remain a challenge for DME electrolytes. Here, we report a molecular design principle that utilizes a steric hindrance effect to tune the solvation structures of Li+ ions. We hypothesized that by substituting the methoxy groups on DME with larger-sized ethoxy groups, the resulting 1,2-diethoxyethane (DEE) should have a weaker solvation ability and consequently more anion-rich inner solvation shells, both of which enhance interfacial stability at the cathode and anode. Experimental and computational evidence indicates such steric-effect-based design leads to an appreciable improvement in electrochemical stability of lithium bis(fluorosulfonyl)imide (LiFSI)/DEE electrolytes. Under stringent full-cell conditions of 4.8 mAh cm-2 NMC811, 50 µm thin Li, and high cutoff voltage at 4.4 V, 4 M LiFSI/DEE enabled 182 cycles until 80% capacity retention while 4 M LiFSI/DME only achieved 94 cycles. This work points out a promising path toward the molecular design of non-fluorinated ether-based electrolyte solvents for practical high-voltage Li metal batteries.

19.
Nat Commun ; 12(1): 5701, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34588448

ABSTRACT

Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.

20.
J Am Chem Soc ; 143(27): 10301-10308, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34184873

ABSTRACT

The electrolyte plays a critical role in lithium-ion batteries, as it impacts almost every facet of a battery's performance. However, our understanding of the electrolyte, especially solvation of Li+, lags behind its significance. In this work, we introduce a potentiometric technique to probe the relative solvation energy of Li+ in battery electrolytes. By measuring open circuit potential in a cell with symmetric electrodes and asymmetric electrolytes, we quantitatively characterize the effects of concentration, anions, and solvents on solvation energy across varied electrolytes. Using the technique, we establish a correlation between cell potential (Ecell) and cyclability of high-performance electrolytes for lithium metal anodes, where we find that solvents with more negative cell potentials and positive solvation energies-those weakly binding to Li+-lead to improved cycling stability. Cryogenic electron microscopy reveals that weaker solvation leads to an anion-derived solid-electrolyte interphase that stabilizes cycling. Using the potentiometric measurement for characterizing electrolytes, we establish a correlation that can guide the engineering of effective electrolytes for the lithium metal anode.

SELECTION OF CITATIONS
SEARCH DETAIL
...