Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Nat Commun ; 15(1): 5876, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997277

ABSTRACT

Biological ion channels exhibit high selectivity and permeability of ions because of their asymmetrical pore structures and surface chemistries. Here, we demonstrate a biomimetic nanofluidic channel (BNC) with an asymmetrical structure and glycyl-L-proline (GLP) -functionalization for ultrafast, selective, and unidirectional Dy3+ extraction over other lanthanide (Ln3+) ions with very similar electronic configurations. The selective extraction mainly depends on the amplified chemical affinity differences between the Ln3+ ions and GLPs in nanoconfinement. In particular, the conductivities of Ln3+ ions across the BNC even reach up to two orders of magnitude higher than in a bulk solution, and a high Dy3+/Nd3+ selectivity of approximately 60 could be achieved. The designed BNC can effectively extract Dy3+ ions with ultralow concentrations and thereby purify Nd3+ ions to an ultimate content of 99.8 wt.%, which contribute to the recycling of rare earth resources and environmental protection. Theoretical simulations reveal that the BNC preferentially binds to Dy3+ ion due to its highest affinity among Ln3+ ions in nanoconfinement, which attributes to the coupling of ion radius and coordination matching. These findings suggest that BNC-based ion selectivity system provides alternative routes to achieving highly efficient lanthanide separation.


Subject(s)
Dysprosium , Dysprosium/chemistry , Ions , Biomimetics/methods , Nanotechnology/methods , Neodymium/chemistry
2.
Article in English | MEDLINE | ID: mdl-39024512

ABSTRACT

Biological photoresponsive ion transport systems consistently attract researchers' attention owing to their remarkable functions of harvesting energy from nature and participating in visual perception systems. Designing and constructing artificial light-driven ion transport devices to mimic biological counterparts remains a challenge owing to fabrication limitations in nanoconfined spaces. Herein, a typical conjugated polyelectrolyte (PFN-Br) was assembled onto a laminated MoS2M using simple solution-processing vacuum filtration, resulting in a heterogeneous three- and two-dimensional nanoporous membrane. The designed band alignment between PFN-Br and MoS2 enables effective directional ion transport under irradiation in an equilibrium solution, even against a 30-fold concentration gradient. The staggered energy structure of PFN-Br and MoS2 enhances charge separation and establishes a photogenerated potential as the driving force for ion transport. Additionally, the activation energy barrier for ion transport across the heterogeneous membrane decreased by 60% after light irradiation, considerably improving ion transport flux. The easy fabrication and high performance of the membrane in light-powered ion transport provide promising approaches for designing nanofluidic devices with possible applications in energy conversion, light-enhanced biosensing, and photoresponsive ionic devices.

3.
J Am Chem Soc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842082

ABSTRACT

Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.

4.
Small ; : e2401264, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634249

ABSTRACT

Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.

5.
Sci Adv ; 10(11): eadj7867, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478611

ABSTRACT

The voltage-gated ion channels, also known as ionic transistors, play substantial roles in biological systems and ion-ion selective separation. However, implementing the ultrafast switchable capabilities and polarity switching of ionic transistors remains a challenge. Here, we report a nanofluidic ionic transistor based on carbon nanotubes, which exhibits an on/off ratio of 104 at operational gate voltage as low as 1 V. By controlling the morphology of carbon nanotubes, both unipolar and ambipolar ionic transistors are realized, and their on/off ratio can be further improved by introducing an Al2O3 dielectric layer. Meanwhile, this ionic transistor enables the polarity switching between p-type and n-type by controlled surface properties of carbon nanotubes. The implementation of constructing ionic circuits based on ionic transistors is demonstrated, which enables the creation of NOT, NAND, and NOR logic gates. The ionic transistors are expected to have profound implications for low-energy consumption computing devices and brain-machine interfacing.

6.
Chem Sci ; 15(12): 4538-4546, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516083

ABSTRACT

Oceans and salt lakes contain vast amounts of uranium. Uranium recovery from natural water not only copes with radioactive pollution in water but also can sustain the fuel supply for nuclear power. The adsorption-assisted electrochemical processes offer a promising route for efficient uranium extraction. However, competitive hydrogen evolution greatly reduces the extraction capacity and the stability of electrode materials with electrocatalytic activity. In this study, we got inspiration from the biomineralisation of marine bacteria under high salinity and biomimetically regulated the electrochemical process to avoid the undesired deposition of metal hydroxides. The uranium uptake capacity can be increased by more than 20% without extra energy input. In natural seawater, the designed membrane electrode exhibits an impressive extraction capacity of 48.04 mg-U per g-COF within 21 days (2.29 mg-U per g-COF per day). Furthermore, in salt lake brine with much higher salinity, the membrane can extract as much uranium as 75.72 mg-U per g-COF after 32 days (2.37 mg-U per g-COF per day). This study provides a general basis for the performance optimisation of uranium capture electrodes, which is beneficial for sustainable access to nuclear energy sources from natural water systems.

7.
ACS Cent Sci ; 10(2): 469-476, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435527

ABSTRACT

With the rapid development of the lithium ion battery industry, emerging lithium (Li) enrichment in nature has attracted ever-growing attention due to the biotoxicity of high Li levels. To date, fast lithium ion (Li+) detection remains urgent but is limited by the selectivity, sensitivity, and stability of conventional technologies based on passive response processes. In nature, archaeal plasma membrane ion exchangers (NCLX_Mj) exhibit Li+-gated multi/monovalent ion transport behavior, activated by different stimuli. Inspired by NCLX_Mj, we design a pH-controlled biomimetic Li+-responsive solid-state nanochannel system for on-demand Li+ detection using 2-(2-hydroxyphenyl)benzoxazole (HPBO) units as Li+ recognition groups. Pristine HPBO is not reactive to Li+, whereas negatively charged HPBO enables specific Li+ coordination under alkaline conditions to decrease the ion exchange capacity of nanochannels. On-demand Li+ detection is achieved by monitoring the decline in currents, thereby ensuring precise and stable Li+ recognition (>0.1 mM) in the toxic range of Li+ concentration (>1.5 mM) for human beings. This work provides a new approach to constructing Li+ detection nanodevices and has potential for applications of Li-related industries and medical services.

8.
World J Gastrointest Surg ; 16(2): 289-306, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463362

ABSTRACT

BACKGROUND: Phospholipase A2 (PLA2) enzymes are pivotal in various biological processes, such as lipid mediator production, membrane remodeling, bioenergetics, and maintaining the body surface barrier. Notably, these enzymes play a significant role in the development of diverse tumors. AIM: To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma (CCA). METHODS: We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus. The study identified differentially expressed genes between tumor tissues and adjacent normal tissues, with a focus on PLA2G2A and PLA2G12B. Gene Set Enrichment Analysis was utilized to pinpoint associated pathways. Moreover, relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted, and their correlation with the prognosis of CCA was evaluated. RESULTS: PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA, manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals. Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients. Additionally, the study delineated pathways and miRNAs associated with these genes. CONCLUSION: Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA. The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA, and their expression levels are indicative of prognosis, underscoring their potential utility in clinical settings.

9.
Chem Soc Rev ; 53(6): 2972-3001, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38345093

ABSTRACT

Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.

11.
Adv Mater ; 36(6): e2308639, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37923399

ABSTRACT

The quasi-solid electrolytes (QSEs) attract extensive attention due to their improved ion transport properties and high stability, which is synergistically based on tunable functional groups and confined solvent molecules among the polymetric networks. However, the trade-off effect between the polymer content and ionic conductivity exists in QSEs, limiting their rate performance. In this work, the epitaxial polymerization strategy is used to build the gradient hydrogel networks (GHNs) covalently fixed on zinc anode. Then, it is revealed that the asymmetric distribution of negative charges benefits GHNs with fast and selective ionic transport properties, realizing a higher Zn2+ transference number of 0.65 than that (0.52) for homogeneous hydrogel networks (HHNs) with the same polymer content. Meanwhile, the high-density networks formed at Zn/GHNs interface can efficiently immobilize free water molecules and homogenize the Zn2+ flux, greatly inhibiting the water-involved parasitic reactions and dendrite growth. Thus, the GHNs enable dendrite-free stripping/plating over 1000 h at 8 mA cm-2 and 1 mAh cm-2 in a Zn||Zn symmetric cell, as well as the evidently prolonged cycles in various full cells. This work will shed light on asymmetric engineering of ion transport channels in advanced quasi-solid battery systems to achieve high energy and safety.

12.
Angew Chem Int Ed Engl ; 63(7): e202317361, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38116868

ABSTRACT

Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K+ or Na+ channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K+ -channel by employing a K+ selective ligand, 1,1,1-tris{[(2'-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K+ and Na+ selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K+ mainly stemmed from the formed suitable channel size. Thus, we assembled the K+ -selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m2 between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.

13.
Small ; : e2308277, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38044301

ABSTRACT

Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2 ) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2 . Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.

14.
ACS Sens ; 8(9): 3428-3434, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37552848

ABSTRACT

Pesticides have caused concerns about food safety due to their residual effects in vegetables and fruits. Imidacloprid, as the frequently used neonicotinoid pesticide, could harm cardiovascular and respiratory function and cause reproductive toxicity in humans. Therefore, reliable methods for portable, selective, and rapid detection are desirable to develop. Herein, we report a neuron-inspired nanofluidic biosensor based on a tyrosine-modified artificial nanochannel for sensitively detecting imidacloprid. The functional tyrosine is modified on the outer surface of porous anodic aluminum oxide to rapidly capture imidacloprid through π-π interactions and hydrogen bonds. The integrated nanofluidic biosensor has a wide concentration range from 10-8 to 10-4 g/mL with an ultralow detection limit of 6.28 × 10-9 g/mL, which outperforms the state-of-the-art sensors. This work provides a new perspective on detecting imidacloprid residues as well as other hazardous pesticide residues in environmental and food samples.


Subject(s)
Biosensing Techniques , Pesticide Residues , Pesticides , Humans , Neonicotinoids/analysis , Pesticides/analysis , Pesticide Residues/analysis , Biosensing Techniques/methods
15.
Entropy (Basel) ; 25(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37509967

ABSTRACT

Quantum adiabatic shortcut technology provides a technique to accelerate the quantum adiabatic process and has been widely used in various fields of quantum information processing. In this work, we proposed a two-level quantum shortcut adiabatic passage model. Then, exploiting the nuclear magnetic resonance, we experimentally simulated the dynamics of quantum shortcut adiabatic passage using the water molecules.

16.
Chem Commun (Camb) ; 59(61): 9384-9387, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37434494

ABSTRACT

A biomimetic hierarchical membrane consisting of ZIF-8 and MXene with controllable morphology could be fabricated by the facile electrochemical deposition method, well-realizing Li+/Mg2+ sieving. This membrane could work stably in real brine with perm-selectivity of Li+/Mg2+ up to 47.4.

17.
J Hazard Mater ; 458: 131978, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37399726

ABSTRACT

Crystalline porous covalent frameworks (COFs) have been considered as a platform for uranium extraction from seawater and nuclear waste. However, the role of rigid skeleton and atomically precise structures of COFs is often ignored in the design of defined binding configuration. Here, a COF with an optimized relative position of two bidentate ligands realizes full potential in uranium extraction. Compared with the para-chelating groups, the optimized ortho-chelating groups with oriented adjacent phenolic hydroxyl groups on the rigid skeleton endow an additional uranyl binding site, thereby increasing the total number of binding sites up to 150%. Experimental and theoretical results indicate that the uranyl capture is greatly improved via the energetically favored multi-site configuration and the adsorption capacity reaches up to 640 mg g-1, which exceeds that of most reported COF-based adsorbents with chemical coordination mechanism in uranium aqueous solution. This ligand engineering strategy can efficiently advance the fundamental understanding of designing the sorbent systems for extraction and remediation technology.

18.
Turk Neurosurg ; 33(4): 556-567, 2023.
Article in English | MEDLINE | ID: mdl-37309626

ABSTRACT

AIM: To optimize the Spontaneous intracerebral hemorrhage (sICH) early hematoma expansion prediction scoring table to adopt appropriate clinical treatment plans and improve the prognosis of sICH patients. MATERIAL AND METHODS: A total of 150 patients with sICH were enrolled, and 44 had early hematoma expansion. According to the selection and exclusion criteria, the study subjects were screened, their NCCT characteristic signs and clinical data were analyzed statistically. The established prediction score was applied to the follow-up study cohort to conduct a pilot study, and the t-test and ROC curve were used to evaluate its predictive ability. RESULTS: Statistical analysis found that initial hematoma volume, GCS score, and NCCT special signs were independent risk factors for early hematoma expansion after sICH (p < 0.05). Thus, a score table was established. Subjects with ≥10 were divided into high-risk group, 6-8 comprised the medium-risk group, and ≤4 were divided into low-risk group. Among 17 patients with acute sICH, 7 developed early hematoma enlargement. The prediction accuracy was 92.41% in the low-risk group, 98.06% in the medium-risk group, and 84.61% in the high-risk group. CONCLUSION: This optimized prediction score table based on the special signs of NCCT shows the high prediction accuracy of sICH early hematoma.


Subject(s)
Cerebral Hemorrhage , Tomography, X-Ray Computed , Humans , Follow-Up Studies , Pilot Projects , Tomography, X-Ray Computed/adverse effects , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Hematoma/diagnostic imaging , Hematoma/etiology , Hypertrophy/complications , Retrospective Studies
19.
Nanomicro Lett ; 15(1): 130, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37209189

ABSTRACT

The global carbon neutrality strategy brings a wave of rechargeable lithium-ion batteries technique development and induces an ever-growing consumption and demand for lithium (Li). Among all the Li exploitation, extracting Li from spent LIBs would be a strategic and perspective approach, especially with the low energy consumption and eco-friendly membrane separation method. However, current membrane separation systems mainly focus on monotonous membrane design and structure optimization, and rarely further consider the coordination of inherent structure and applied external field, resulting in limited ion transport. Here, we propose a heterogeneous nanofluidic membrane as a platform for coupling multi-external fields (i.e., light-induced heat, electrical, and concentration gradient fields) to construct the multi-field-coupled synergistic ion transport system (MSITS) for Li-ion extraction from spent LIBs. The Li flux of the MSITS reaches 367.4 mmol m-2 h-1, even higher than the sum flux of those applied individual fields, reflecting synergistic enhancement for ion transport of the multi-field-coupled effect. Benefiting from the adaptation of membrane structure and multi-external fields, the proposed system exhibits ultrahigh selectivity with a Li+/Co2+ factor of 216,412, outperforming previous reports. MSITS based on nanofluidic membrane proves to be a promising ion transport strategy, as it could accelerate ion transmembrane transport and alleviate the ion concentration polarization effect. This work demonstrated a collaborative system equipped with an optimized membrane for high-efficient Li extraction, providing an expanded strategy to investigate the other membrane-based applications of their common similarities in core concepts.

20.
Opt Express ; 31(9): 14008-14026, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157274

ABSTRACT

Low-light images always suffer from dim overall brightness, low contrast, and low dynamic ranges, thus result in image degradation. In this paper, we propose an effective method for low-light image enhancement based on the just-noticeable-difference (JND) and the optimal contrast-tone mapping (OCTM) models. First, the guided filter decomposes the original images into base and detail images. After this filtering, detail images are processed based on the visual masking model to enhance details effectively. At the same time, the brightness of base images is adjusted based on the JND and OCTM models. Finally, we propose a new method to generate a sequence of artificial images to adjust the brightness of the output, which has a better performance in image detail preservation compared with other single-input algorithms. Experiments have demonstrated that the proposed method not only achieves low-light image enhancement, but also outperforms state-of-the-art methods qualitatively and quantitatively.

SELECTION OF CITATIONS
SEARCH DETAIL
...