Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e15720, 2023.
Article in English | MEDLINE | ID: mdl-37551350

ABSTRACT

Human activities are increasing the input of atmospheric particulate pollutants to forests. The components of particulate pollutants include inorganic anions, base cations and hydrocarbons. Continuous input of particulate pollutants may affect soil functioning in forests, but their effects may be modified by soil fauna. However, studies investigating how soil fauna affects the effects of particulate pollutants on soil functioning are lacking. Here, we investigated how earthworms and the particulate components interact in affecting soil enzymatic functions in a deciduous (Quercus variabilis) and a coniferous (Pinus massoniana) forest in southeast China. We manipulated the addition of nitrogen (N, ammonium nitrate), sodium (Na, sodium chloride) and polycyclic aromatic hydrocarbons (PAHs, five mixed PAHs) in field mesocosms with and without Eisenia fetida, an earthworm species colonizing forests in eastern China. After one year, N and Na addition increased, whereas PAHs decreased soil enzymatic functions, based on average Z scores of extracellular enzyme activities. Earthworms generally stabilized soil enzymatic functions via neutralizing the effects of N, Na and PAHs addition in the deciduous but not in the coniferous forest. Specifically, earthworms neutralized the effects of N and Na addition on soil pH and the effects of the addition of PAHs on soil microbial biomass. Further, both particulate components and earthworms changed the correlations among soil enzymatic and other ecosystem functions in the deciduous forest, but the effects depended on the type of particulate components. Generally, the effects of particulate components and earthworms on soil enzymatic functions were weaker in the coniferous than the deciduous forest. Overall, the results indicate that earthworms stabilize soil enzymatic functions in the deciduous but not the coniferous forest irrespective of the type of particulate components. This suggests that earthworms may neutralize the influence of atmospheric particulate pollutants on ecosystem functions, but the neutralization may be restricted to deciduous forests.


Subject(s)
Environmental Pollutants , Oligochaeta , Polycyclic Aromatic Hydrocarbons , Animals , Humans , Ecosystem , Forests , Soil
2.
Ecol Evol ; 13(5): e10047, 2023 May.
Article in English | MEDLINE | ID: mdl-37139404

ABSTRACT

Earthworms modulate carbon and nitrogen cycling in terrestrial ecosystems, but their effect may be compromised by the deposition of pollutants from industrial emissions. However, studies investigating how deposited compounds affect the role of earthworms in carbon cycling such as litter decomposition are lacking, although the interactions of earthworms and deposited compounds are important for understanding the impact of pollutants on ecosystems and the potential of earthworms in bioremediation. We performed a 365-day in situ litterbag decomposition experiment in a deciduous (Quercus variabilis) and coniferous (Pinus massoniana) forest in southeast China. We manipulated nitrogen (N), sodium (Na), and polycyclic aromatic hydrocarbons (PAHs) as model compounds during litter decomposition with and without earthworms (Eisenia fetida). After one year, N, Na, and PAH all slowed down litter mass loss, with the effects of Na being the strongest. By contrast, E. fetida generally increased litter mass loss, and the positive effects were uniformly maintained irrespective of the type of compounds added. However, the pathways to how earthworms increased litter mass loss varied among the compounds added and the two forests studied. As indicated by structural equation modeling, earthworms mitigated the negative effects of deposited compounds by directly increasing litter mass loss and indirectly increasing soil pH and microbial biomass. Overall, the results indicate that the acceleration of litter mass loss by earthworms is little affected by deposited compounds, and that earthworms have the potential to mitigate negative impacts of pollutants on litter decomposition and ecosystem processes.

3.
J Fungi (Basel) ; 8(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36135625

ABSTRACT

Solar radiation has been regarded as a driver of litter decomposition in arid and semiarid ecosystems. Photodegradation of litter organic carbon (C) depends on chemical composition and water availability. However, the chemical changes in organic C that respond to solar radiation interacting with water pulses remain unknown. To explain changes in the chemical components of litter organic C exposed to UV-B, UV-A, and photosynthetically active radiation (PAR) mediated by water pulses, we measured the chemistry of marcescent Lindera glauca leaf litter by solid-state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) over 494 days of litter decomposition with a microcosm experiment. Abiotic and biotic factors regulated litter decomposition via three pathways: first, photochemical mineralization of lignin methoxyl C rather than aromatic C exposed to UV radiation; second, the biological oxidation and leaching of cellulose O-alkyl C exposed to PAR and UV radiation interacts with water pulses; and third, the photopriming effect of UV radiation on lignin aromatic C rather than cellulose O-alkyl C under the interaction between radiation and water pulses. The robust decomposition index that explained the changes in the mass loss was the ratio of aromatic C to O-alkyl C (AR/OA) under radiation, but the ratio of hydrophobic to hydrophilic C (hydrophobicity), the carbohydrate C to methoxyl C ratio (CC/MC), and the alkyl C to O-alkyl C ratio (A/OA) under radiation were mediated by water pulses. Moreover, the photopriming effect and water availability promoted the potential activities of peroxidase and phenol oxidase associated with lignin degradation secreted by fungi. Our results suggest that direct photodegradation of lignin methoxyl C increases microbial accessibility to lignin aromatic C. Photo-oxidized compounds might be an additional C pool to regulate the stability of the soil C pool derived from plant litter by degrading lignin methoxyl and aromatic C.

4.
Environ Sci Pollut Res Int ; 29(12): 17919-17931, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34677766

ABSTRACT

Algae play an important role in ecological processes of aquatic ecosystems. Understanding the interactive effects of algae with invertebrates in litter decomposition is important for predicting the effects of global change on aquatic ecosystems. We manipulated Typha angustifolia litter to control exposure to shrimp fecal pellets and/or grazing, and the green alga Chlorella vulgaris were added to test their interactive effects on T. angustifolia litter decomposition. Our results showed that algae largely shortened microbial conditioning time and improved litter palatability (increasing litter quality), resulting in greater decomposition and higher fecal pellet production. Fecal pellets enhanced grazing effects on decomposition by increasing litter ash content. The effects of algae and especially fecal pellets on decomposition were dependent on or mediated by grazing. Without grazing, algae slightly promoted decomposition and marginally offset the negative effect of fecal pellets on litter decomposition. Shrimp grazing dramatically decreased microbial activity (extracellular enzyme activity and microbial respiration) at microbial conditioning stage while enhanced microbial activity after 84 days especially with both algae and fecal pellets present. Algae significantly upregulated N- and P-acquiring and slightly downregulated C-acquiring enzyme activity. Fecal pellets significantly depressed recalcitrant C-decomposition enzyme activity. Nevertheless, the three factors synergistically and significantly increased C loss and most enzyme activities, microbial respiration, and N immobilization, resulting in the decrease of litter C:N. Our results reveal the synergistic action of different trophic levels (autotrophs, heterotrophs, and primary consumers) in the complicated nutrient pathways of litter decomposition and provide support for predicting the effects of global changes (e.g., N deposition and CO2 enrichment), which have dramatically effects on alga dynamics and on ecological processes in aquatic ecosystems.


Subject(s)
Chlorella vulgaris , Typhaceae , Chlorella vulgaris/metabolism , Ecosystem , Nitrogen/metabolism , Plant Leaves/metabolism , Plants/metabolism , Typhaceae/metabolism
5.
Environ Sci Pollut Res Int ; 27(16): 19764-19773, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32222921

ABSTRACT

Phytoremediation assisted by plant growth-promoting bacteria (PGPB) is considered an effective strategy for cadmium (Cd) removal in contaminated sites. This study uses a hydroponic experiment to investigate how Sphingobium yanoikuyae Sy310 affects Cd accumulation capacity and tolerance of Salix matsudana Koidz (S. matsudana) roots. The results showed that Cd induced growth change and physiological response on S. matsudana roots, displaying with reduced root length, increased antioxidant enzyme activities, and most importantly, enhanced cell wall polysaccharide contents. The Sy310 inoculation enhanced Cd accumulation in roots and alleviated the Cd toxic effects by regulating root growth, antioxidant enzyme system, and cell wall polysaccharide remodeling. Under Cd stress, Sy310 significantly induced increased root length and biomass, as well as higher root IAA level and Cd retention in cell walls. The Sy310 inoculation enhanced root pectin and hemicellulose 1 content, and pectin methylesterase activity, indicating that more amount of -COOH and -OH in cell walls for binding Cd. With Sy310-regulated extensive Cd regional sequestration in root cell walls and enhanced catalase activity, the root H2O2 and malondialdehyde content decreased, which contributes to improve Cd tolerance of S. matsudana roots. Furthermore, the Sy310 inoculation did not affect root cell wall structure and oxidative stress in the absence of Cd, representing a well-symbiotic relationship between Sy310 and S. matsudana. Therefore, Sy310 plays an important role in expediting the phytoremediation process of Cd with S. matsudana and has practical application potential.


Subject(s)
Salix , Soil Pollutants/analysis , Biodegradation, Environmental , Cadmium , Hydrogen Peroxide , Plant Roots/chemistry
6.
Environ Sci Pollut Res Int ; 27(8): 8406-8417, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31900781

ABSTRACT

Cadmium (Cd) has already caused worldwide concern because of its high biotoxicity to human and plants. This study investigated how nitrogen (N) and phosphorus (P) enrichment alter the toxic morpho-physiological impacts of and accumulation of Cd in hydroponically grown Salix matsudana Koidz cuttings. Our results showed that Cd significantly depressed growth and induced a physiological response on S. matsudana cuttings, exhibiting by reduced biomass, decreased photosynthetic pigment concentrations, and increased soluble protein and peroxidase activity of shoots and roots. N and P enrichment alleviated the Cd toxic effects by increasing production of proline which prevented cuttings from damage by Cd-induced ROS, displaying with decreased malondialdehyde concentration, and stimulated overall Cd accumulation. Enrichment of N and P significantly decreased the upward Cd transfer, combing with enhanced root uptake (stimulated root activity) and retranslocation from stem, resulted in extensive Cd sequestration in S. matsudana roots. In both root and xylem, concentration of Cd is positively correlated with N and P. The improved phytoextraction potential by N and P enrichment was mainly via elevating Cd concentration in roots, probably by increased production of phytochelatins (e.g., proline) which form Cd chelates and help preventing damage from Cd-induced ROS. This study provides support for the application of S. matsudana in Cd phytoextraction even in eutrophic aquatic environments.


Subject(s)
Nitrogen/chemistry , Salix , Soil Pollutants , Biodegradation, Environmental , Cadmium/chemistry , Phosphorus/chemistry , Plant Roots
7.
Ecol Evol ; 8(18): 9439-9450, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30377513

ABSTRACT

A major gap to understand the effects of plant secondary compounds on litter decomposition in the brown food web is lack of information about how these secondary compounds modify the activities of soil decomposers. To address this question, we conducted an experiment where aqueous extracts and tannins prepared from Pinus massoniana needles were added to soils collected either from P. massoniana (pine soil) or Quercus variabilis (oak soil). Our objective was to investigate the cascading effects of the two compounds on isopod (Armadillidium vulgare) activity and subsequent change in Q. variabilis litter decomposition. We found that in pine soil, both aqueous extracts and tannins (especially at high concentrations) had positive effects on litter decomposition rates when isopods were present. While without isopods, litter decomposition was enhanced only by high concentrations of aqueous extracts, and tannins had no significant effect on decomposition. In oak soil, high concentrations of aqueous extracts and tannins inhibited litter decomposition and soil microbial biomass, regardless of whether isopods were present or not. Low concentrations of aqueous extracts increased litter decomposition rates and soil microbial biomass in oak soil in the absence of isopods. Based on our results, we suggest that the high concentration of secondary compounds in P. massoniana is a key factor influencing the effects of decomposers on litter decomposition rates, and tannins form a major part of secondary compounds. These funding particularly provide insight into form- and concentration-oriented effects of secondary compounds and promote our understanding of litter decomposition and soil nutrient cycling in forest ecosystem.

8.
Bioresour Technol ; 263: 548-554, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29778793

ABSTRACT

This study investigated the effects of adding vermiculite to the food waste composting process. Four treatments with varying vermiculite percent compositions, 0%, 5%, 10% and 15% (w/w, wet weight of food waste basis) mixed with initial food waste were designed and then composted for 42 days. Results show that adding vermiculite prolongs the thermophilic phase, speeds up the organic matter loss, reduces the NH3 emissions and electrical conductivity values. Compared to the control, the amount of nitrogen loss through NH3 emissions in the treatments of 5%, 10% and 15% vermiculite decreased by 9.89%, 26.39% and 18.65%, respectively. Finally this work suggests that vermiculite is a suitable additive for food waste composting, especially when the makeup of the compost is 10% vermiculite.


Subject(s)
Aluminum Silicates/chemistry , Ammonia/analysis , Composting , Food , Nitrogen , Refuse Disposal , Soil
9.
Environ Sci Pollut Res Int ; 25(6): 5369-5378, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29209973

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.


Subject(s)
Hyphae/metabolism , Mycorrhizae/metabolism , Soil Microbiology , Soil/chemistry , Symbiosis , Biodegradation, Environmental , Ecosystem , Hyphae/enzymology , Hyphae/growth & development , Mycorrhizae/growth & development , Nitrogen/analysis , Nitrogen/metabolism
10.
Harmful Algae ; 66: 47-56, 2017 06.
Article in English | MEDLINE | ID: mdl-28602253

ABSTRACT

Cyanobacterial and zooplankton inducible defenses are important but understudied process that regulate the trophic interactions of freshwater ecosystem. Daphnia due to its large size is considered an important zooplankton with the high potential to control cyanobacterial blooms. It has been shown that Daphnia through maternal induction transfer tolerance to their next generation against Microcystis toxicity. Maternal induction has been investigated in different Daphnia species without considering phenotypic plasticity of prey. Laboratory experiments were performed to explore cyanobacteria-Daphnia inducible defenses in order to better understand their interactions. Two Daphnia species were fed either with Microcystis aeruginosa PCC7806 (Ma) or Microcystis flos-aquae (Mf) mixed with Chlorella vulgaris (Cv) (exposed Daphnia), and or pure Cv (unexposed Daphnia). Exposed prey cultures were produced by prior exposure to Daphnia infochemicals. Neonates produced by exposed and unexposed Daphnia were fed with mixed diet (Microcystis+Cv) of either exposed and or unexposed prey. Growth parameters and toxin production of exposed prey cultures were significantly different than that of control. Exposed Daphnia fecundity and survival was higher as compared to unexposed Daphnia. Growth and reproduction was reduced in exposed Daphnia when fed with exposed prey as compared to those fed with unexposed prey. This study provides information on the interactive inducible defenses between cyanobacteria and its grazer under laboratory conditions and may increase our understanding of cyanobacteria and Daphnia interactions in the freshwater ecosystem.


Subject(s)
Chlorella vulgaris/physiology , Daphnia/physiology , Food Chain , Microcystis/physiology , Animals , Phytoplankton/physiology , Zooplankton/physiology
11.
Sci Rep ; 5: 18031, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26658758

ABSTRACT

Arbuscular mycorrhiza fungi (AMF) can colonize the roots of Amorpha fruticosa, a perennial leguminous woody shrub, and form arbuscular mycorrhiza (AM). AMF have significant promoting effects on A. fruticosa growth as the intensity of fungal colonization increases. Taking AMF-A. fruticosa symbionts as the experimental material, gel-free isobaric tags for relative and absolute quantification (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the expression of A. fruticosa mycorrhizal proteins at the maturation stage. A total of 3,473 proteins were identified, of which 77 showed dramatic changes in their root expression levels; 33 increased, and 44 decreased. We also found nine AMF proteins that were expressed with AMF treatment. The 77 proteins were classified according to function. Plant proteins were assigned into 11 categories: metabolism-related (32%), protein folding and degradation-related (22%), energy-related (10%), protein synthesis-related (8%), stress and defense-related (24%), transcription-related (6%), membrane and transport-related (4%), cellular structure-related (2.5%), signaling transduction-related (11%) and unknown proteins (5%). The results of the study provide a foundation for further investigation of the metabolic characteristics and molecular mechanisms of AM.


Subject(s)
Fabaceae/metabolism , Fabaceae/microbiology , Glomeromycota/metabolism , Proteome/metabolism , Symbiosis/physiology , Fabaceae/physiology , Glomeromycota/physiology , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/physiology , Proteomics/methods , Tandem Mass Spectrometry
12.
Asian Pac J Cancer Prev ; 14(3): 1571-8, 2013.
Article in English | MEDLINE | ID: mdl-23679238

ABSTRACT

Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.


Subject(s)
Agaricales/chemistry , Antineoplastic Agents/therapeutic use , Neoplasms/prevention & control , Plants, Medicinal/chemistry , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...