Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Biochemistry ; 63(12): 1578-1587, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38803051

ABSTRACT

l-(+)-Tartaric acid plays important roles in various industries, including pharmaceuticals, foods, and chemicals. cis-Epoxysuccinate hydrolases (CESHs) are crucial for converting cis-epoxysuccinate to l-(+)-tartrate in the industrial production process. There is, however, a lack of detailed structural and mechanistic information on CESHs, limiting the discovery and engineering of these industrially relevant enzymes. In this study, we report the crystal structures of RoCESH and KoCESH-l-(+)-tartrate complex. These structures reveal the key amino acids of the active pocket and the catalytic triad residues and elucidate a dynamic catalytic process involving conformational changes of the active site. Leveraging the structural insights, we identified a robust BmCESH (550 ± 20 U·mg-1) with sustained catalytic activity even at a 3 M substrate concentration. After six batches of transformation, immobilized cells with overexpressed BmCESH maintained 69% of their initial activity, affording an overall productivity of 200 g/L/h. These results provide valuable insights into the development of high-efficiency CESHs and the optimization of biotransformation processes for industrial uses.


Subject(s)
Biocatalysis , Tartrates , Tartrates/metabolism , Tartrates/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrolases/chemistry , Hydrolases/metabolism , Hydrolases/genetics , Models, Molecular , Protein Conformation
2.
ACS Chem Biol ; 19(5): 1040-1044, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38620022

ABSTRACT

Cysteine conjugation is widely used to constrain phage displayed peptides for the selection of cyclic peptides against specific targets. In this study, the nontoxic Bi3+ ion was used as a cysteine conjugation reagent to cross-link peptide libraries without compromising phage infectivity. We constructed a randomized 3-cysteine peptide library and cyclized it with Bi3+, followed by a selection against the maltose-binding protein as a model target. Next-generation sequencing of selection samples revealed the enrichment of peptides containing clear consensus sequences. Chemically synthesized linear and Bi3+ cyclized peptides were used for affinity validation. The cyclized peptide showed a hundred-fold better affinity (0.31 ± 0.04 µM) than the linear form (39 ± 6 µM). Overall, our study proved the feasibility of developing Bi3+ constrained bicyclic peptides against a specific target using phage display, which would potentially accelerate the development of new peptide-bismuth bicycles for therapeutic or diagnostic applications.


Subject(s)
Peptide Library , Peptides, Cyclic , Peptides, Cyclic/chemistry , Cysteine/chemistry , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Cyclization , Peptides/chemistry , Amino Acid Sequence
3.
J Radiat Res ; 65(2): 215-222, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38331401

ABSTRACT

Several materials are utilized in the production of bolus, which is essential for superficial tumor radiotherapy. This research aimed to compare the variations in dose deposition in deep tissues during electron beam radiotherapy when employing different bolus materials. Specifically, the study developed general superficial tumor models (S-T models) and postoperative breast cancer models (P-B models). Each model comprised a bolus made of water, polylactic acid (PLA), polystyrene, silica-gel or glycerol. Geant4 was employed to simulate the transportation of electron beams within the studied models, enabling the acquisition of dose distributions along the central axis of the field. A comparison was conducted to assess the dose distributions in deep tissues. In regions where the percentage depth dose (PDD) decreases rapidly, the relative doses (RDs) in the S-T models with silica-gel bolus exhibited the highest values. Subsequently, RDs for PLA, glycerol and polystyrene boluses followed in descending order. Notably, the RDs for glycerol and polystyrene boluses were consistently below 1. Within the P-B models, RDs for all four bolus materials are consistently below 1. Among them, the smallest RDs are observed with the glycerol bolus, followed by silica-gel, PLA and polystyrene bolus in ascending order. As PDDs are ~1-3% or smaller, the differences in RDs diminish rapidly until are only around 10%. For the S-T and P-B models, polystyrene and glycerol are the most suitable bolus materials, respectively. The choice of appropriate bolus materials, tailored to the specific treatment scenario, holds significant importance in safeguarding deep tissues during radiotherapy.


Subject(s)
Electrons , Neoplasms , Humans , Radiotherapy Dosage , Polystyrenes , Glycerol , Radiotherapy Planning, Computer-Assisted , Polyesters , Silicon Dioxide , Monte Carlo Method , Phantoms, Imaging
4.
Front Bioeng Biotechnol ; 11: 1224382, 2023.
Article in English | MEDLINE | ID: mdl-37727349

ABSTRACT

[This corrects the article DOI: 10.3389/fbioe.2022.890132.].

5.
Angew Chem Int Ed Engl ; 62(25): e202304994, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37083030

ABSTRACT

Heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are an important class of bioactive secondary metabolites. Biosynthesis offers a practical opportunity to access their bioactive structural diversity, however, it is restricted by the limited substrate scopes of the HTDKPs-forming P450 dimerases. Herein, by genome mining and investigation of the sequence-product relationships, we unveiled three important residues (F387, F388 and E73) in these P450s that are pivotal for selecting different diketopiperazine (DKP) substrates in the upper binding pocket. Engineering these residues in NasF5053 significantly expanded its substrate specificity and enabled the collective biosynthesis, including 12 self-dimerized and at least 81 cross-dimerized HTDKPs. Structural and molecular dynamics analysis of F387G and E73S revealed that they control the substrate specificity via reducing steric hindrance and regulating substrate tunnels, respectively.


Subject(s)
Diketopiperazines , Tryptophan , Tryptophan/chemistry , Diketopiperazines/chemistry , Substrate Specificity , Molecular Dynamics Simulation , Dimerization
6.
J Agric Food Chem ; 71(8): 3852-3861, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36790033

ABSTRACT

Ginsenosides are the main bioactive ingredients in plants of the genus Panax. Vina-ginsenoside R7 (VG-R7) is one of the rare high-value ginsenosides with health benefits. The only reported method for preparing VG-R7 involves inefficient and low-yield isolation from highly valuable natural resources. Notoginsenoside Fc (NG-Fc) isolated in the leaves and stems of Panax notoginseng is a suitable substrate for the preparation of VG-R7 via specific hydrolysis of the outside xylose at the C-20 position. Here, we first screened putative enzymes belonging to the glycoside hydrolase (GH) families 1, 3, and 43 and found that KfGH01 can specifically hydrolyze the ß-d-xylopyranosyl-(1 → 6)-ß-d-glucopyranoside linkage of NG-Fc to form VG-R7. The I248F/Y410R variant of KfGH01 obtained by protein engineering displayed a kcat/KM value (305.3 min-1 mM-1) for the reaction enhanced by approximately 270-fold compared with wild-type KfGH01. A change in the shape of the substrate binding pockets in the mutant allows the substrate to sit closer to the catalytic residues which may explain the enhanced catalytic efficiency of the engineered enzyme. This study identifies the first glycosidase for bioconversion of a ginsenoside with more than four sugar units, and it will inspire efforts to investigate other promising enzymes to obtain valuable natural products.


Subject(s)
Ginsenosides , Panax notoginseng , Panax , Ginsenosides/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Panax/chemistry , Panax notoginseng/metabolism , Hydrolysis
7.
Front Bioeng Biotechnol ; 10: 890132, 2022.
Article in English | MEDLINE | ID: mdl-35992362

ABSTRACT

When the human brain learns multiple related or continuous tasks, it will produce knowledge sharing and transfer. Thus, fast and effective task learning can be realized. This idea leads to multi-task learning. The key of multi-task learning is to find the correlation between tasks and establish a fast and effective model based on these relationship information. This paper proposes a multi-task learning framework based on stochastic configuration networks. It organically combines the idea of the classical parameter sharing multi-task learning with that of constraint sharing configuration in stochastic configuration networks. It organically combines the idea of the classical parameter sharing multi-task learning with that of constraint sharing configuration in stochastic configuration neural networks. Moreover, it provides an efficient multi-kernel function selection mechanism. The convergence of the proposed algorithm is proved theoretically. The experiment results on one simulation data set and four real life data sets verify the effectiveness of the proposed algorithm.

8.
J Int Med Res ; 50(3): 3000605221083242, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35264048

ABSTRACT

OBJECTIVE: To evaluate the effect of therapeutic drug monitoring (TDM) of vancomycin in neurosurgery patients. METHODS: In this retrospective, single-center cohort study, data were collected from patients administered vancomycin after neurosurgery during 2020. Intervention by a pharmacist using an area under the curve (AUC)-based strategy for TDM of vancomycin was started on 1 July 2020. The trough concentration was monitored previously. Data regarding basic demographics, vancomycin application, and TDM were collected and analyzed. RESULTS: Ninety and 155 samples were included in the non-intervention and intervention groups, respectively. No difference in baseline characteristics was detected. After intervention, the attainment rate of vancomycin TDM was significantly increased from 36.7% to 52.3%. The intervention resulted in an increased daily vancomycin dose (28.9 vs. 26.7 mg/kg/day), a more reasonable sample extraction time (sixth vs. ninth dose), reductions in dose adjustments (37.4% vs. 54.4%) and preventative applications (66.7% vs. 52.3%), and no difference in kidney function impact. The intervention group had a shorter hospital stay. CONCLUSIONS: Intervention by a clinical pharmacist using an AUC-based strategy for vancomycin TDM can provide benefits other than pharmacokinetic attainment in neurosurgery patients. Further prospective multi-center studies are needed to establish standardized intervention measures and evaluation indicators.


Subject(s)
Neurosurgery , Vancomycin , Anti-Bacterial Agents/adverse effects , Area Under Curve , Cohort Studies , Drug Monitoring/methods , Humans , Retrospective Studies , Tertiary Care Centers , Vancomycin/therapeutic use
9.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-34341825

ABSTRACT

Phage display is a powerful technique routinely used for the generation of peptide- or protein-based ligands. The success of phage display selections critically depends on the size and structural diversity of the libraries, but the generation of large libraries remains challenging. In this work, we have succeeded in developing a phage display library comprising around 100 billion different (bi)cyclic peptides and thus more structures than any previously reported cyclic peptide phage display library. Building such a high diversity was achieved by combining a recently reported library cloning technique, based on whole plasmid PCR, with a small plasmid that facilitated bacterial transformation. The library cloned is based on 273 different peptide backbones and thus has a large skeletal diversity. Panning of the peptide repertoire against the important thrombosis target coagulation factor XI enriched high-affinity peptides with long consensus sequences that can only be found if the library diversity is large.


Subject(s)
Peptide Library , Peptides , Ligands , Peptides/genetics , Peptides, Cyclic , Plasmids
10.
Chimia (Aarau) ; 75(6): 514-517, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34233815

ABSTRACT

Peptides have a number of attractive properties that make them an interesting modality for drug development, including their ability to bind challenging targets, their high target specificity, and their non-toxic metabolic products. However, a major limitation of peptides as drugs is their typically poor oral availability, hindering their convenient and flexible application as pills. Of the more than 60 approved peptide drugs, the large majority is not orally applicable. The oral delivery of peptides is hampered by their metabolic instability and/or limited intestinal uptake. In this article, we review the barriers peptides need to overcome after their oral administration to reach disease targets, we highlight two recent successes of pharma companies in developing orally applicable peptide drugs, and we discuss efforts of our laboratory towards the generation of bioavailable cyclic peptides.


Subject(s)
Peptides, Cyclic , Peptides , Administration, Oral , Drug Delivery Systems
11.
Nat Commun ; 12(1): 2675, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976148

ABSTRACT

Developing molecules that emulate the properties of naturally occurring ice-binding proteins (IBPs) is a daunting challenge. Rather than relying on the (limited) existing structure-property relationships that have been established for IBPs, here we report the use of phage display for the identification of short peptide mimics of IBPs. To this end, an ice-affinity selection protocol is developed, which enables the selection of a cyclic ice-binding peptide containing just 14 amino acids. Mutational analysis identifies three residues, Asp8, Thr10 and Thr14, which are found to be essential for ice binding. Molecular dynamics simulations reveal that the side chain of Thr10 hydrophobically binds to ice revealing a potential mechanism. To demonstrate the biotechnological potential of this peptide, it is expressed as a fusion ('Ice-Tag') with mCherry and used to purify proteins directly from cell lysate.


Subject(s)
Antifreeze Proteins/genetics , Cell Surface Display Techniques/methods , Mutation , Peptides, Cyclic/genetics , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Base Sequence , Binding Sites/genetics , Crystallization , Hydrophobic and Hydrophilic Interactions , Ice , Molecular Dynamics Simulation , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
12.
J Med Chem ; 64(10): 6802-6813, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33974422

ABSTRACT

Coagulation factor XI (FXI) has emerged as a promising target for the development of safer anticoagulation drugs that limit the risk of severe and life-threatening bleeding. Herein, we report the first cyclic peptide-based FXI inhibitor that selectively and potently inhibits activated FXI (FXIa) in human and animal blood. The cyclic peptide inhibitor (Ki = 2.8 ± 0.5 nM) achieved anticoagulation effects that are comparable to that of the gold standard heparin applied at a therapeutic dose (0.3-0.7 IU/mL in plasma) but with a substantially broader estimated therapeutic range. We extended the plasma half-life of the peptide via PEGylation and demonstrated effective FXIa inhibition over extended periods in vivo. We validated the anticoagulant effects of the PEGylated inhibitor in an ex vivo hemodialysis model with human blood. Our work shows that FXI can be selectively targeted with peptides and provides a promising candidate for the development of a safe anticoagulation therapy.


Subject(s)
Anticoagulants/chemistry , Factor XIa/antagonists & inhibitors , Peptides, Cyclic/chemistry , Amino Acid Sequence , Animals , Anticoagulants/metabolism , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Factor XIa/metabolism , Half-Life , Humans , Isomerism , Models, Biological , Partial Thromboplastin Time , Peptide Library , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Polyethylene Glycols/chemistry , Rabbits , Renal Dialysis
13.
Eur J Clin Pharmacol ; 77(1): 95-105, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32875388

ABSTRACT

AIMS: The efficacy and toxicity of polymyxin B (PB) are closely related to its pharmacokinetic/pharmacodynamic (PK/PD) index area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC) ratio. The purpose of this study was to obtain PK data for PB in Chinese severe pneumonia patients and establish appropriate blood sampling time points for the PB therapeutic drug monitoring (TDM). SUBJECT AND METHOD: After treatment with at least four doses of PB (50 IU, q12h), the blood samples were collected immediately after the end of infusion (C0) and 1.5, 2, 4, 6, 8, and 12 h (C1.5, C2, C4, C6, C8, C12) after PB administration. The PB blood plasma concentrations were determined using an ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). All 42 patients were randomly divided into modeling (n = 24) and validation (n = 18) groups. The relationship between AUCss,24h and PB plasma concentration at each time point in modeling group was analyzed using limited sampling strategy and a PK method based on one-compartment with correction model. RESULTS: C6 scheme was found to provide the most accurate prediction of AUCss,24h values (r2 = 0.984) with the target value of 1.9-4.2 µg/ml at steady state to reach the 50-100 µg h/ml criteria of AUCss,24h. C0 with target value of 1.0-2.8 µg/ml can be considered an alternative sampling scheme (r2 = 0.900) but prediction deviation may exist. C0 and Cmax sampling scheme also demonstrated good predicting ability of AUC values using PK model. CONCLUSION: This study provides a clear plan for the implementation of TDM of PB, which is useful for optimizing the dosing regimen and individualizing treatment in severe pneumonia patients.


Subject(s)
Anti-Bacterial Agents/blood , Area Under Curve , Models, Biological , Pneumonia/blood , Polymyxin B/blood , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacokinetics , Asian People , Drug Monitoring , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Pneumonia/drug therapy , Pneumonia/metabolism , Polymyxin B/pharmacokinetics
14.
ACS Chem Biol ; 15(11): 2907-2915, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33125222

ABSTRACT

The success of phage display, used for developing target-specific binders based on peptides and proteins, depends on the size and diversity of the library screened, but generating large libraries of phage-encoded polypeptides remains challenging. New peptide phage display libraries developed in recent years rarely contained more than 1 billion clones, which appears to have become the upper size limit for libraries generated with reasonable effort. Here, we established a strategy based on whole-plasmid PCR and self-ligation to clone a library with more than 2 × 1010 members. The enormous library size could be obtained through amplifying the entire vector DNA by PCR, which omitted the step of vector isolation from bacterial cells, and through appending DNA coding for the peptide library via a PCR primer, which enabled efficient DNA circularization by end-ligation to facilitate the difficult step of vector-insertion of DNA fragments. Panning the peptide repertoires against a target yielded high-affinity ligands and validated the quality of the library and thus the new library cloning strategy. This simple and efficient strategy places larger libraries within reach for nonspecialist researchers to hopefully expand the possible targets of phage display applications.


Subject(s)
Peptide Library , Peptides, Cyclic/genetics , Plasmids/genetics , Base Sequence , DNA, Circular/genetics , Genetic Vectors/genetics , Polymerase Chain Reaction
15.
Nat Commun ; 11(1): 3890, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753636

ABSTRACT

Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (Ki = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.


Subject(s)
Anticoagulants/pharmacology , Blood Coagulation/drug effects , Factor XIIa/antagonists & inhibitors , Peptides, Cyclic/drug effects , Thrombosis/prevention & control , Animals , Chlorides/adverse effects , Cloning, Molecular , Disease Models, Animal , Drug Discovery , Extracorporeal Membrane Oxygenation/methods , Factor XII/antagonists & inhibitors , Female , Ferric Compounds/adverse effects , Humans , Lung , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rabbits , Recombinant Proteins/pharmacology , Swine
16.
Nat Biomed Eng ; 4(5): 560-571, 2020 05.
Article in English | MEDLINE | ID: mdl-32393891

ABSTRACT

The oral administration of peptide drugs is hampered by their metabolic instability and limited intestinal uptake. Here, we describe a method for the generation of small target-specific peptides (less than 1,600 Da in size) that resist gastrointestinal proteases. By using phage display to screen large libraries of genetically encoded double-bridged peptides on protease-resistant fd bacteriophages, we generated a peptide inhibitor of the coagulation Factor XIa with nanomolar affinity that resisted gastrointestinal proteases in all regions of the gastrointestinal tract of mice after oral administration, enabling more than 30% of the peptide to remain intact, and small quantities of it to reach the blood circulation. We also developed a gastrointestinal-protease-resistant peptide antagonist for the interleukin-23 receptor, which has a role in the pathogenesis of Crohn's disease and ulcerative colitis. The de novo generation of targeted peptides that resist proteolytic degradation in the gastrointestinal tract should help the development of effective peptides for oral delivery.


Subject(s)
Peptides/administration & dosage , Peptides/therapeutic use , Proteolysis , Administration, Oral , Amino Acid Sequence , Animals , Cell Surface Display Techniques , Crystallography, X-Ray , Female , Gastrointestinal Tract/metabolism , Humans , Isomerism , Mice, Inbred BALB C , Models, Molecular , Peptide Hydrolases/metabolism , Peptide Library , Peptides/chemistry , Protein Stability , Protein Structure, Secondary , Receptors, Interleukin/antagonists & inhibitors , Receptors, Interleukin/metabolism
18.
J Clin Pharm Ther ; 45(5): 983-990, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31985852

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Teicoplanin is widely used for the treatment of infections caused by drug-resistant Gram-positive bacteria. Since there is a good correlation between trough levels and clinical outcome, therapeutic drug monitoring (TDM) is recommended to achieve better clinical curative effects. However, TDM of teicoplanin is not routine in China. So, a programme was initiated in 2017, including both HPLC method establishment and interlaboratory quality assessment, for the measurement of teicoplanin. METHODS: A main centre and a quality control centre were set up in the study. An HPLC-based method of teicoplanin determination in plasma was developed by the main centre. Analysis was performed using a Waters Symmetry C18 column (250 mm × 4.6 mm, 5 µm). The mobile phase was NaH2 PO4 (0.01 mol/L) and acetonitrile (75:25 v/v; pH 3.3), with a flow rate of 1.0 mL/min and a detection wavelength of 215 nm. Piperacillin sodium was selected as an internal standard (IS). Twenty-six additional TDM centres were then recruited to adopt this method. Then, all the centres were asked to take part in a quality control assessment evaluated by the quality control centre. RESULTS: For all TDM centres, linearity of teicoplanin concentration ranges was between 3.125 and 100 µg/mL. Intraday and interday accuracies ranged from 87.1% to 118.4%. Intraday and interday precision ranged from 0.3% to 13.8%. Therapeutic drug monitoring centres all passed inter-room quality assessment. All samples tested met the acceptance criteria. Then, 542 samples were collected. Patients with sub-optimal (≤10 mg/L) plasma teicoplanin concentrations constituted 42% of the total study population. WHAT IS NEW AND CONCLUSIONS: For the first time, a simple, rapid and accurate HPLC method for determining teicoplanin levels was successfully applied to therapeutic drug monitoring in clinical practice for twenty-seven TDM centres in China. The results demonstrated excellent interlaboratory agreement for teicoplanin testing and provide support for clinical laboratory quality management and results inter-accreditation.


Subject(s)
Anti-Bacterial Agents/blood , Drug Monitoring/methods , Laboratories/standards , Teicoplanin/blood , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/administration & dosage , China , Chromatography, High Pressure Liquid , Humans , Middle Aged , Quality Control , Reproducibility of Results , Teicoplanin/administration & dosage , Young Adult
19.
Angew Chem Int Ed Engl ; 58(34): 11801-11805, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31251434

ABSTRACT

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases at the intersection of health and disease due to their involvement in processes such as tissue repair and immunity as well as cancer and inflammation. Because of the high structural conservation in the catalytic domains and shallow substrate binding sites, selective, small-molecule inhibitors of MMPs have remained elusive. In a tour-de-force peptide engineering approach combining phage-display selections, rational design of enhanced zinc chelation, and d-amino acid screening, we succeeded in developing a first synthetic MMP-2 inhibitor that combines high potency (Ki =1.9±0.5 nm), high target selectivity, and proteolytic stability, and thus fulfills all the required qualities for in cell culture and in vivo application. Our work suggests that selective MMP inhibition is achievable with peptide macrocycles and paves the way for developing specific inhibitors for application as chemical probes and potentially therapeutics.


Subject(s)
Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Protein Engineering , Amino Acid Sequence , Binding Sites , Catalytic Domain , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase Inhibitors/chemical synthesis , Peptide Library , Proteolysis , Sequence Homology, Amino Acid , Substrate Specificity
20.
Nat Chem ; 10(7): 715-723, 2018 07.
Article in English | MEDLINE | ID: mdl-29713035

ABSTRACT

Successful screening campaigns depend on large and structurally diverse collections of compounds. In macrocycle screening, variation of the molecular scaffold is important for structural diversity, but so far it has been challenging to diversify this aspect in large combinatorial libraries. Here, we report the cyclization of peptides with two chemical bridges to provide rapid access to thousands of different macrocyclic scaffolds in libraries that are easy to synthesize, screen and decode. Application of this strategy to phage-encoded libraries allowed for the screening of an unprecedented structural diversity of macrocycles against plasma kallikrein, which is important in the swelling disorder hereditary angioedema. These libraries yielded inhibitors with remarkable binding properties (subnanomolar Ki, >1,000-fold selectivity) despite the small molecular mass (~1,200 Da). An interlaced bridge format characteristic of this strategy provided high proteolytic stability (t1/2 in plasma of >3 days), making double-bridged peptides potentially amenable to topical or oral delivery.


Subject(s)
Macrocyclic Compounds/chemistry , Peptides/chemistry , Cyclization , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...