Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 776, 2018.
Article in English | MEDLINE | ID: mdl-29867922

ABSTRACT

Targeted cancer immunotherapy with irradiated, granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862), a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs) such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC) class II genes (HLA-DRA, HLA-DRB3, HLA-DMA, HLA-DMB), in addition to several other factors known to play immunostimulatory roles. These factors include MHC class I components (B2M, HLA-A, HLA-B), ADA (encoding adenosine deaminase), ADGRE5 (CD97), CD58 (LFA3), CD74 (encoding invariant chain and CLIP), CD83, CXCL8 (IL8), CXCL16, HLA-F, IL6, IL18, and KITLG. Moreover, both SV-BR-1-GM cells and the responding study subject carried an HLA-DRB3*02:02 allele, raising the question of whether SV-BR-1-GM cells can directly present endogenous antigens to T cells, thereby inducing a tumor-directed immune response. In support of this, SV-BR-1-GM cells (which also carry the HLA-DRB3*01:01 allele) treated with yellow fever virus (YFV) envelope (Env) 43-59 peptides reactivated YFV-DRB3*01:01-specific CD4+ T cells. Thus, the partial HLA allele match between SV-BR-1-GM and the clinical responder might have enabled patient T lymphocytes to directly recognize SV-BR-1-GM TAAs as presented on SV-BR-1-GM MHCs. Taken together, our findings are consistent with a potentially unique mechanism of action by which SV-BR-1-GM cells can act as APCs for previously primed CD4+ T cells.


Subject(s)
Breast Neoplasms/immunology , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cell Line, Tumor/immunology , Immunotherapy/methods , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/immunology , Breast Neoplasms/therapy , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Lymphocyte Activation/immunology
2.
PLoS One ; 10(7): e0131216, 2015.
Article in English | MEDLINE | ID: mdl-26132730

ABSTRACT

Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells - a critical cell that links the innate and adaptive immune systems. We find that plasmin generated on the surface of necrotic cells enhances their phagocytic removal by human monocyte-derived dendritic cells. Plasmin also promoted phagocytosis of protease-resistant microparticles by diverse mouse dendritic cell sub-types both in vitro and in vivo. Together with an increased phagocytic capacity, plasmin-treated dendritic cells maintain an immature phenotype, exhibit reduced migration to lymph nodes, increase their expression/release of the immunosuppressive cytokine TGF-ß, and lose their capacity to mount an allogeneic response. Collectively, our findings support a novel role for plasmin formed on dead cells and other phagocytic targets in maintaining tissue homeostasis by increasing the phagocytic function of dendritic cells while simultaneously decreasing their immunostimulatory capacity consistent with producing an immunosuppressive state.


Subject(s)
Dendritic Cells/physiology , Fibrinolysin/physiology , Immunity, Innate/physiology , Phagocytosis/physiology , Adaptive Immunity/physiology , Animals , Cells, Cultured , Flow Cytometry , Humans , Lymphocyte Activation/physiology , Male , Mice, Inbred C57BL , Recombinant Fusion Proteins , Transforming Growth Factor beta/physiology
3.
Trans R Soc Trop Med Hyg ; 109(1): 70-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25573111

ABSTRACT

BACKGROUND: Many current vaccines to a specific pathogen influence responses to other pathogens in a process called heterologous immunity. We propose that their particulate nature contributes to non-specific effects. Herein, we demonstrate polystyrene nanoparticles modulate dendritic cell (DC) homeostasis, thereby promoting a persistent enhanced state of immune readiness to a subsequent infectious challenge. METHODS: Particles (approximately 40 nm and 500 nm carboxylated polystyrene nanoparticles; PSNPs) alone or conjugated to a model antigen were injected in mice, and DCs in draining lymph nodes (dLNs) and bone-marrow (BM) quantified by flow cytometry. BM cells were tested for capacity to generate DCs upon culture with granulocyte and macrophage colony stimulating factor. Mice were challenged with Plasmodium yoelli. Blood parasitaemias were monitored by GIEMSA. Sera was analyzed for antibodies by ELISA. RESULTS: Intradermal administration of 40 nm PSNPs induced anti-inflammatory cytokines, chemokines and growth factors, increased numbers and proportions of DCs in the dLN, and increased the capacity of BM to generate DCs. Consistent with these unexpected changes, 40 nm PSNPs pre-injected mice had enhanced ability to generate immunity to a subsequent malarial infection. CONCLUSIONS: Intradermal administration of 40 nm PSNPs modifies DC homeostasis, which may at least in part explain the observed beneficial heterologous effects of current particulate vaccines. Further nanotechnological developments may exploit such strategies to promote beneficial non-specific effects.


Subject(s)
Cytokines/drug effects , Dendritic Cells/drug effects , Malaria Vaccines/pharmacology , Malaria/immunology , Malaria/prevention & control , Nanoparticles , Signal Transduction/drug effects , Vaccines, Synthetic/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Cytokines/immunology , Dendritic Cells/immunology , Disease Models, Animal , Homeostasis , Immunoconjugates/pharmacology , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Particle Size , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...