Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2903-2914, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31529864

ABSTRACT

The contents and stability of soil dissolved organic matter (DOM) can affect key processes of soil carbon and nitrogen cycle. The responses of DOM content and its spectral structure pro-perties in forest soils to climate change remain unclear. We collected soil samples from two temperate forests, i.e., the broadleaf and Korean pine mixed forest (BKPF) and adjacent secondary white birch forest (WBF), in Changbai Mountains, northeastern China. Using a combination of three-dimensional fluorescence spectrum and parallel factor analysis, a simulated freeze-thaw experiment was conducted in the laboratory. We examined the effects of freeze-thaw intensity, freeze-thaw cycle and their interaction on the content, components and spectral properties of DOM leached from the two forest surface soils with different moisture levels. The results showed that DOM content and components of soil leachates varied with forest types, soil moisture, freeze-thaw intensity and freeze-thaw cycle. The DOM content in the leachates was lowest at medium moisture level and was significantly affected by the high freeze-thaw intensity. In addition, the DOM content increased first and then decreased with the increases of freeze-thaw cycles. Three fluorescence components of DOM in the forest soil leachates were identified as humic acid-like DOM, fulvic acid-like DOM and protein-like DOM. The DOM components of BKPF soil leachates were mainly consisted of fulvic acid-like substances with a high humification index. However, the DOM from WBF soil leachates was dominated by humic acid-like substances with low stability, and the three fluorescence components were significantly affected by the freeze-thaw intensity. Results from the redundancy analysis showed that under the experimental conditions, forest type played a leading role in changing DOM properties. The DOM content and its three fluorescence intensities of WBF soil leachates were higher than those of BKPF. Soil moisture significantly affected the aromaticity of DOM in the forest soil leachates, and the DOM aromaticity of soil leachates from the two forest stands ranked as medium moisture > high moisture > low moisture. With the increases of freeze-thaw intensity, the DOM aromaticity of BKPF soil leachates significantly decreased. Furthermore, the increases of freeze-thaw cycles significantly increased the humification degree of DOM in the forest soil leachates. Therefore, upon different freeze-thaw disturbance, the DOM content and bioavailability of soil leachates with low moisture tended to increase, particularly in the WBF soil leachates, which may result in an increased lea-ching of DOM in temperate forest soils during spring freeze-thaw periods. The results provide a refe-rence for further investigating DOM turnover in temperate forest soils during spring freeze-thaw periods.


Subject(s)
Forests , Humic Substances/analysis , Soil , Carbon , China
2.
Acta Pharmacol Sin ; 32(12): 1491-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22036865

ABSTRACT

AIM: To investigate the ability of ox-LDL to induce ossification of endothelial progenitor cells (EPCs) in vitro and explored whether oxidative stress, especially hypoxia inducible factor-1α (HIF-1α) and reactive oxygen species (ROS), participate in the ossific process. METHODS: Rat bone marrow-derived endothelial progenitor cells (BMEPCs) were cultured in endothelial growth medium supplemented with VEGF (40 ng/mL) and bFGF (10 ng/mL). The cells were treated with oxidized low-density lipoprotein (ox-LDL, 5 µg/mL) and/or ß-glycerophosphate (ß-GP, 10 mmol/L). Calcium content and Von Kossa staining were used as the measures of calcium deposition. Ossific gene expression was determined using RT-PCR. The expression of osteocalcin (OCN) was detected with immunofluorescence. Alkaline phosphatase (ALP) activity was analyzed using colorimetric assay. Intercellular reactive oxygen species (ROS) were measured with flow cytometry. RESULTS: BMEPCs exhibited a spindle-like shape. The percentage of cells that expressed the cell markers of EPCs CD34, CD133 and kinase insert domain-containing receptor (KDR) were 46.2%±5.8%, 23.5%±4.0% and 74.3%±8.8%, respectively. Among the total cells, 78.3%±4.2% were stained with endothelial-specific fluorescence. Treatment of BMEPCs with ox-LDL significantly promoted calcium deposition, which was further significantly enhanced by co-treatment with ß-GP. The same treatments significantly increased the gene expression of core-binding factor a-1 (cbfa-1) and OCN, while decreased the gene expression of osteoprotegerin (OPG). The treatments also significantly enhanced the activity of ALP, but did not affect the number of OCN(+) cells. Furthermore, the treatments significantly increased ROS and activated the hypoxia inducible factor-1α (HIF-1α). In all these effects, ox-LDL acted synergistically with ß-GP. CONCLUSION: Ox-LDL and ß-GP synergistically induce ossification of BMEPCs, in which an oxidizing mechanism is involved.


Subject(s)
Glycerophosphates/metabolism , Lipoproteins, LDL/metabolism , Osteogenesis , Stem Cells/cytology , Animals , Base Sequence , DNA Primers , Oxidative Stress , Polymerase Chain Reaction , Rats , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...