Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotox Res ; 40(6): 2253-2263, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36074257

ABSTRACT

Bupivacaine (BUP), which is widely used in anesthesia, can cause neurotoxicity and neurological abnormalities. This work intended to study the function of long non-coding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) in BUP-triggered neurotoxicity. OIP5-AS1, microRNA (miR)-34b, and nuclear factor of activated T cells 5 (NFAT5) levels were examined via real-time quantitative PCR (RT-qPCR). Cell proliferation, caspase-3 activity, and apoptosis were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), caspase-3 activity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The regulatory relationships between miR-34b and OIP5-AS1 or NFAT5 were validated via RNA binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Our data demonstrated that OIP5-AS1 and NFAT5 levels were downregulated and miR-34b was upregulated upon exposure to BUP. Functional assays implied that the OIP5-AS1 deficiency impeded cell proliferation and enhanced the apoptosis of DRG neurons, while OIP5-AS1 addition reversed these changes. Moreover, OIP5-AS1 could bind to miR-34b and OIP5-AS1 regulated BUP-induced neurotoxicity via miR-34b. Besides, miR-34b could directly interact with NFAT5. Augmentation of miR-34b impeded cell proliferation and expedited the apoptosis and caspase-3 activity, while NFAT5 addition neutralized these impacts. Finally, it was verified that OIP5-AS1 could upregulate NFAT5 through sponging miR-34b. In sum, our results disclosed that OIP5-AS1 ameliorated BUP-caused neurotoxicity via regulating the miR-34b/NFAT5 axis, suggesting that OIP5-AS1 might be a promising therapeutic target for the treatment of BUP-induced neurotoxicity.


Subject(s)
MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Caspase 3 , Ganglia, Spinal/metabolism , Cell Proliferation , Neurons/metabolism
2.
BMC Vet Res ; 17(1): 349, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34781948

ABSTRACT

BACKGROUND: Akabane virus (AKAV) is an important insect-borne virus which is widely distributed throughout the world except the Europe and is considered as a great threat to herbivore health. RESULTS: An AKAV strain defined as TJ2016 was firstly isolated from the bovine sera in China in 2016. Sequence analysis of the S and M segments suggested that the isolated AKAV strain was closely related to the AKAV strains JaGAr39 and JaLAB39, which belonged to AKAV genogroup II. To further study the pathogenic mechanism of AKAV, the full-length cDNA clone of TJ2016 S, M, and L segment was constructed separately into the TVT7R plasmid at the downsteam of T7 promoter and named as TVT7R-S, TVT7R-M, and TVT7R-L, respectively. The above three plasmids were further transfected into the BSR-T7/5 cells simultaneously with a ratio of 1:1:1 to produce the rescued virus AKAV. Compared with the parental wild type AKAV (wtAKAV), the rescued virus (rAKAV) was proved to be with similar cytopathic effects (CPE), plaque sizes and growth kinetics in BHK-21 cells. CONCLUSION: We successfully isolated a AKAV strain TJ2016 from the sera of cattle and established a reverse genetic platform for AKAV genome manipulation. The established reverse genetic system is also a powerful tool for further research on AKAV pathogenesis and even vaccine studies.


Subject(s)
Bunyaviridae Infections/veterinary , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Animals , Bunyaviridae Infections/virology , Cattle , Cattle Diseases/virology , Cell Line , Cricetinae , Genotype , Orthobunyavirus/pathogenicity , Phylogeny , Reverse Genetics/veterinary
3.
J AOAC Int ; 104(5): 1389-1393, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-33769495

ABSTRACT

BACKGROUND: The diseases caused by the Capripoxvirus species have very similar symptoms and are difficult to distinguish clinically. According to a recent report, Capripoxvirus are not strictly host specific. OBJECTIVE: This study aimed to identify the viruses from ovine (include sheep and goat) or bovine, which will assist in selecting the appropriate vaccine and correct measures to control diseases. METHOD: Universal primers for all Capripoxvirus and specific probes for lumpy skin disease virus, sheeppox virus, and goatpox virus were designed and analyzed to identify the viruses from ovine (including sheep and goats) or bovine species. The parameters of the system, such as the annealing temperatures and the quantities of primers and probes used, were optimized. The sensitivity, specificity, and reproducibility were tested. RESULTS: Each probe showed a specific fluorescent signal, with no cross reaction with other pathogens that cause symptoms similar to those of the poxviruses. The LOD was 102 copies of the target genome DNA. The 557 local clinical samples and samples from Ethiopia were successfully detected and the results were consistent with a restriction fragment length polymorphism PCR analysis of the P32 and RPO30 genes and gene sequencing. CONCLUSIONS: This optimized real-time PCR detection system has good diagnostic sensitivity and specificity and can be used for the rapid and effective differential diagnosis of these diseases in goats, sheep, and cattle. HIGHLIGHTS: It is a rapid detection method to distinguish the viruses from ovine (include sheep and goat) or bovine.


Subject(s)
Capripoxvirus , Goat Diseases , Lumpy skin disease virus , Poxviridae Infections , Sheep Diseases , Animals , Capripoxvirus/genetics , Cattle , Goat Diseases/diagnosis , Goats , Lumpy skin disease virus/genetics , Poxviridae Infections/diagnosis , Poxviridae Infections/veterinary , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sheep , Sheep Diseases/diagnosis
4.
BMC Vet Res ; 17(1): 48, 2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33485335

ABSTRACT

BACKGROUND: Brucellosis is a serious zoonosis disease that frequently causes significant economic loss in animal husbandry and threatens human health. Therefore, we established a rapid, accurate, simple and sensitive fluorescent immunochromatographic strip test (ICST) based on quantum dots (QDs) for detection the antibodies of Brucella infection animals serum. RESULTS: The test strips were successfully prepared by quantum dot fluorescent microspheres (QDFM) as tracers, which were covalently coupled to an outer membrane protein of Brucella OMP22. The outer membrane protein OMP28 and monoclonal antibodies of OMP22 were separately dispensed onto a nitrocellulose membrane as test and quality control lines, respectively. The critical threshold for determining negative or positive through the ratio of the fluorescent signal of the test line and the control line (HT / HC) is 0.0492. The repeatability was excellent with an overall average CV of 8.78%. Under optimum conditions, the limit of detection was 1.05 ng/mL (1:512 dilution). With regard to the detection of brucellosis in 150 clinical samples, the total coincidence rate of ICST and Rose Bengal plate test (RBPT) was 97.3%, the coincidence rate of positive samples was 98.8%, the coincidence rate of negative samples was 95.3%, the sensitivity of RBPT is 1:32, and no cross reaction with the sera of other related diseases was observed. CONCLUSION: In our present study, the QDFM has promising application for on-site screening of brucellosis owing to its high detection speed, high sensitivity, high specificity and low cost.


Subject(s)
Brucella/immunology , Brucellosis/veterinary , Quantum Dots/chemistry , Animals , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Brucellosis/diagnosis , Brucellosis/immunology , Cattle , Chromatography, Affinity/methods , Chromatography, Affinity/veterinary , Goats , Microspheres , Reagent Strips , Sensitivity and Specificity , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...