Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 101(1): 59-72, 2020 01.
Article in English | MEDLINE | ID: mdl-31682220

ABSTRACT

Dengue virus assembly involves the encapsidation of genomic RNA by the capsid protein (C) and the acquisition of an envelope comprising the premembrane (prM) and envelope (E) glycoproteins. This rapid process, lacking in detectable nucleocapsid intermediates, may impose authentic C-prM-E arrangement as a prerequisite for efficient particle assembly. A mosquito cell-based complementation system was employed in this study to investigate the possibility that expression of the three structural proteins in trans allows the efficient production of a partially C-deleted dengue virus as compared to the presence of C alone. Following the transfection of ΔC56-capped RNA transcripts into C6/36 cells transiently expressing C or CprME, the production of the single-cycle virus was comparable. Subsequent propagation in the stable CprME-expressing clone, however, supported virus adaptation leading to acquisition of the L29P and S101F (PF) dual mutations in the C protein. The triple mutant, ΔC56(PF), exhibited enhanced levels of virus replication, specific infectivity and frequent increases of intracellular C dimer, as compared with ΔC56 in the CprME-clone. The PF mutations were associated with the accumulation of truncated CprM in ΔC56(PF)-infected cells, and uncleaved CprM as well as reduced intracellular C-dimer when the dual mutations were introduced into the wild-type dengue virus genetic background. These results indicate that the PF mutations may exert a replication-enhancing effect for the triple mutant virus by relieving the interference of trans-complementing structural proteins during viral assembly and suggest that the C-prM-E arrangement may be advantageous for pseudoinfectious virus production.


Subject(s)
Dengue Virus/genetics , Nucleocapsid/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Virus Assembly/genetics , Amino Acid Sequence , Animals , Capsid Proteins/genetics , Cell Line , Chlorocebus aethiops , Culicidae/virology , Dengue/virology , RNA, Viral/genetics , Vero Cells , Virus Replication/genetics
2.
Asian Pac J Cancer Prev ; 18(12): 3343-3351, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29286229

ABSTRACT

Background: Chemotherapy for advanced cholangiocarcinoma (CCA) is largely ineffective; thus innovative combinations of chemotherapeutic agents and natural compounds represent a promising strategy. This study aimed to investigate the synergistic effects of forbesione combined with 5-fluorouracil (5-FU) in hamster cholangiocarcinoma (Ham-1) cells both in vitro and in vivo. The anti-tumor effects of 5-FU combined with forbesione in vitro were determined using the Sulforhodamine B (SRB) assay and the effects in vivo were assessed in transplanted Ham-1 allograph models. Using ethidium bromide/acridine orange (EB/AO) staining, the morphological changes of apoptotic cells was investigated. The expressions of apoptosis-related molecules after combined treatment with forbesione and 5-FU were determined using real-time RT-PCR and western blot analysis. Forbesione or 5-FU alone inhibited proliferation of Ham-1 cells in a dose-dependent manner and their combination showed a synergistic proliferation inhibitory effect in vitro. In vivo studies, forbesione in combination with 5-FU exhibited greater inhibition of the tumor in the hamster model compared with treatment using either drug alone. Forbesione combined with 5-FU exerted stronger apoptotic induction in Ham-1 cells than did single drug treatment. The combination of drugs strongly suppressed the expression of B-cell lymphoma 2 (Bcl-2) and procaspase-3 while enhancing the expression of p53, Bcl-2-associated X protein (Bax), apoptotic protease activating factor-1 (Apaf-1), caspase-9 and caspase-3, compared with single drug treatments. These results explained the decreased expression of cytokeratin 19 (CK19) positive cells and proliferation cell nuclear antigen (PCNA) positive cells in Ham-1 cell tumor tissues of the treated hamsters. There was no apparent systemic toxicity observed in the treated animals compared with the control groups. Forbesione combined with 5-FU strongly induced apoptosis in Ham-1 cells. The growth inhibitory effect of combined treatment using these two drugs was much greater than treatment with either drug alone, both in vitro and in vivo.


Subject(s)
Bile Duct Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Fluorouracil/pharmacology , Garcinia/chemistry , Heterocyclic Compounds/pharmacology , Plant Extracts/pharmacology , Animals , Antimetabolites, Antineoplastic/pharmacology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cricetinae , Drug Synergism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...