Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 213(2): 519-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25204637

ABSTRACT

AIM: To determine whether late gestation under- and overnutrition programme metabolic plasticity in a similar way, and whether metabolic responses to an obesogenic diet in early post-natal life depend on the foetal nutrition history. METHODS: In a 3 × 2 factorial design, twin-pregnant ewes were for the last 6 weeks of gestation (term = 147 days) assigned to HIGH (N = 13; 150 and 110% of energy and protein requirements, respectively), NORM (N = 9; 100% of requirements) or LOW (N = 14; 50% of requirements) diets. The twin offspring were raised on high-carbohydrate-high-fat (HCHF; N = 35) or conventional (CONV; N = 35) diets from 3 days to 6 months of age (around puberty). Then intravenous glucose (GTT; overnight fasted), insulin (ITT; fed) and propionate (gluconeogenetic precursor; PTT; both fed and fasted) tolerance tests were conducted to evaluate (hepatic) metabolic plasticity. RESULTS: Prenatal malnutrition differentially impacted adaptations of particularly plasma lactate followed by glucose, cholesterol and insulin. This was most clearly expressed during PTT in fasted lambs and much less during ITT and GTT. In fasted lambs, propionate induced more dramatic increases in lactate than glucose, and HIGH lambs became more hyperglycaemic, hyperlactataemic and secreted less insulin compared to the hypercholesterolaemic LOW lambs. Propionate-induced insulin secretion was virtually abolished in fasted HCHF lambs, but upregulated in fasted compared to fed CONV lambs. HCHF lambs had the greatest glucose-induced insulin secretory responses. CONCLUSION: Prenatal malnutrition differentially programmed glucose-lactate metabolic pathways and cholesterol homeostasis. Prenatal overnutrition predisposed for hyperglycaemia and hyperlactataemia, whereas undernutrition predisposed for hypercholesterolaemia upon exposure to an obesogenic diet. Prenatal overnutrition (not undernutrition) interfered with pancreatic insulin secretion by non-glucose-dependent mechanisms.


Subject(s)
Diet , Glucose/metabolism , Hyperglycemia/metabolism , Insulin/blood , Lactic Acid/metabolism , Overnutrition/metabolism , Prenatal Exposure Delayed Effects , Adaptation, Physiological/physiology , Aging , Animals , Fasting/metabolism , Female , Postpartum Period , Pregnancy , Sheep
2.
Acta Physiol (Oxf) ; 210(2): 317-29, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24313944

ABSTRACT

AIM: Determine the impacts of pre- and early-post-natal nutrition on selected markers of hepatic glucose and fat metabolism. METHODS: Twin-bearing ewes were fed 100% (NORM) or 50% (LOW) of protein and energy requirements during the last 6-weeks of gestation. Twin-lambs received either a high-carbohydrate high-fat (HCHF) or conventional (CONV) diet from 3 days to 6 months of age (around puberty), whereafter lambs from the four subgroups were slaughtered (16 males/3 females). Remaining lambs (19 females) were fed a moderate diet and slaughtered at 2 years of age (young adults). RESULTS: Pre-natal LOW nutrition was associated with increased hepatic triglyceride, ceramide and free fatty acid content in adulthood (not observed in lambs), which was accompanied by up-regulated early-stage insulin signalling as reflected by increased INSRß and PI3K-p110 protein expression. The HCHF diet increased hepatic triglyceride content in lambs, associated with down-regulated expressions of energy-metabolism-related genes (GLUT1, PPARα, SREBP1c, PEPCK). These post-natal effects were not observed in adult HCHF sheep, after they had received a moderate (body-fat correcting) diet for 1.5 years. Interestingly, pre-natal LOW nutrition induced permanent alterations in hepatic phospholipids' fatty acid composition. Thus, the amount of linoleic acid (C18 : 2 ∆(9,12)) was significantly increased and composition of rumen-derived fatty acids were altered, indicating changed composition of rumenal microbiota. CONCLUSION: Hepatic insulin signalling and linoleic and microbial-derived fatty acid content in phospholipids are targets of foetal programming induced by late-gestation undernutrition. Future studies are required to explain their cause-effect associations with increased risks of developing hepatic steatosis and insulin insensitivity in adulthood.


Subject(s)
Energy Metabolism/physiology , Fatty Acids/chemistry , Liver/metabolism , Overnutrition/complications , Prenatal Exposure Delayed Effects/metabolism , Animals , Blotting, Western , Diet , Disease Models, Animal , Female , Lipid Metabolism/physiology , Liver/pathology , Male , Malnutrition/complications , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Prenatal Nutritional Physiological Phenomena , Real-Time Polymerase Chain Reaction , Sheep
3.
Acta Physiol (Oxf) ; 210(1): 110-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23746217

ABSTRACT

AIM: To investigate if late gestation under- or overnutrition has similar adverse impacts on visceral adiposity, metabolic and endocrine function in sheep, and if subsequent exposure to a high-fat diet in early post-natal life exaggerates the prenatal programming outcomes later in life. METHODS: Thirty-six twin-pregnant ewes were fed a NORM (fulfilling 100% of daily requirements for energy and protein), LOW (50% of NORM) or HIGH diet (150% of energy and 110% of protein requirements) during the last 6 weeks of gestation (term = 147 days). Post-natally, the twin lambs were subjected to a high-fat or a moderate diet until 6 months of age (around puberty), where metabolic and endocrine adaptability to fasting was examined, and subgroups of animals were killed. RESULTS: Animals exposed to either prenatal under- or overnutrition had reduced subcutaneous fat deposition when fed a high-fat diet, resulting in higher ratios of mesenteric and peri-renal fat relative to subcutaneous fat compared to controls. This was not related to prenatal influences on plasma glucose or insulin. Irrespective of the prenatal diet, high-fat-fed lambs underwent changes resembling the metabolic syndrome with higher plasma glucose, cholesterol, non-esterified fatty acids, triglyceride and lactate combined with abdominal obesity. Peri-renal fat appeared to be a particular target of a high-fat diet post-natally. CONCLUSION: Both prenatal under- and overnutrition predisposed for abdominal adiposity, apparently by reducing the expandability of subcutaneous adipose tissue and induced differential physiological adaptations to fasting. This study does not suggest that exposure to gestational overnutrition will provide a protective effect against development of hyperglycaemia later in life.


Subject(s)
Aging/metabolism , Fasting/metabolism , Fetal Nutrition Disorders/metabolism , Glucose/metabolism , Insulin/metabolism , Intra-Abdominal Fat/metabolism , Overnutrition/metabolism , Adaptation, Physiological , Animals , Female , Gestational Age , Insulin Resistance , Pregnancy , Sheep
4.
Acta Physiol (Oxf) ; 210(1): 84-98, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23452307

ABSTRACT

AIM: Exposure to adverse intra-uterine conditions can predispose for metabolic disorders later in life. By using a sheep model, we studied (i) how programming of glucose-insulin homoeostasis during late gestation is manifested later in life depending on the early post-natal dietary exposure and (ii) whether dietary alteration in obese individuals can prevent adverse outcomes of early life programming. METHODS: During late gestation, twin-pregnant sheep were fed 100% (NORM) or 50% (LOW) of energy and protein requirements. After birth, offspring were exposed to a moderate (CONV) or high-carbohydrate-high-fat (HCHF) diet until around puberty. Offspring remaining thereafter (exclusively females) were fed a moderate diet until young adulthood. RESULTS: LOW lambs had increased insulin secretory responses during intravenous glucose tolerance tests indicative of reduced insulin sensitivity. HCHF lambs were hypertriglyceridaemic, 75% had mild pancreatic collagen infiltration, and their acute insulin secretory response and insulin clearance during intravenous glucose and insulin tolerance tests, respectively, were reduced. However, NORM-HCHF in contrast to LOW-HCHF lambs had normal glucose tolerance, indicating that later health outcomes are highly influenced by pre-natal nutrition. Dietary alteration normalized glucose-insulin homoeostasis in adult HCHF females, whereas late-gestation undernutrition (LOW) permanently depressed insulin sensitivity. CONCLUSION: Maintenance of glucose tolerance in sheep exposed to pre-natal undernutrition relied on pancreatic hypersecretion of insulin to compensate for reduced insulin sensitivity. A mismatching high-fat diet in early post-natal life interfered with this pancreatic hypersecretion resulting in reduced glucose tolerance. Early post-natal, but not late pre-natal, impacts on glucose-insulin homoeostasis could be reversed by dietary correction later in life.


Subject(s)
Aging/metabolism , Blood Glucose/metabolism , Insulin/blood , Malnutrition/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Evidence-Based Medicine , Female , Homeostasis , Insulin Resistance , Malnutrition/embryology , Models, Animal , Pregnancy , Sheep
5.
J Endocrinol ; 216(3): 389-402, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23287634

ABSTRACT

Mounting evidence led us to hypothesize that i) function of the thyroid hormone (TH) axis can be programed by late gestation undernutrition (LG-UN) and ii) early-postnatal-life overnutrition (EL-ON) exacerbates the fetal impacts on TH axis function. In a 2 × 2 factorial experiment, 21 twin-bearing sheep were fed one of two diets during late gestation: NORM (fulfilling energy and protein requirements) or LOW (50% of NORM). From day 3 to 6 months after birth (around puberty), the twin lambs were assigned to each their diet: conventional (CONV) or high-carbohydrate, high-fat, where after half the lambs were killed. Remaining sheep (exclusively females) were fed the same moderate diet until 2 years of age (young adults). At 6 months and 2 years of age, fasting challenges were conducted and target tissues were collected at autopsy. LG-UN caused adult hyperthyroidism associated with increased thyroid expression of genes regulating TH synthesis and deiodination. In one or more of the target tissues, liver, cardiac muscle, and longissimus dorsi muscle, gene expressions were increased by LG-UN for TH receptors (THRA and THRB) and deiodinases but were decreased in visceral and subcutaneous adipose tissues. EL-ON increased TH levels in adolescent lambs, but this was reversed after diet correction and not evident in adulthood. We conclude that LG-UN programed TH axis function at the secretory level and differentially in target tissues, which was increasingly manifested with age. Differential TH signaling in adipose vs other tissues may be part of a mechanism whereby fetal malnutrition can predispose for obesity and other metabolic disorders.


Subject(s)
Malnutrition/physiopathology , Overnutrition/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Thyroid Gland/physiopathology , Thyroid Hormones/blood , Animals , Female , Male , Malnutrition/blood , Overnutrition/blood , Pregnancy , Prenatal Exposure Delayed Effects/blood , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Sheep , Thyroid Gland/metabolism
6.
Br J Nutr ; 109(11): 2098-110, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23069212

ABSTRACT

We have developed a sheep model to facilitate studies of the fetal programming effects of mismatched perinatal and postnatal nutrition. During the last trimester of gestation, twenty-one twin-bearing ewes were fed a normal diet fulfilling norms for energy and protein (NORM) or 50% of a normal diet (LOW). From day 3 postpartum to 6 months (around puberty) of age, one twin lamb was fed a conventional (CONV) diet and the other a high-carbohydrate-high-fat (HCHF) diet, resulting in four groups of offspring: NORM-CONV; NORMHCHF; LOW-CONV; LOW-HCHF. At 6 months of age, half of the lambs (all males and three females) were slaughtered for further examination and the other half (females only) were transferred to a moderate sheep diet until slaughtered at 24 months of age (adulthood). Maternal undernutrition during late gestation reduced the birth weight of LOW offspring (P<0·05), and its long-term effects were increased adrenal size in male lambs and adult females (P<0·05), increased neonatal appetite for fat-(P=0·004) rather than carbohydrate-rich feeds (P<0·001) and reduced deposition of subcutaneous fat in both sexes (P<0·05). Furthermore, LOW-HCHF female lambs had markedly higher visceral:subcutaneous fat ratios compared with the other groups (P<0·001). Postnatal overfeeding (HCHF) resulted in obesity (.30% fat in soft tissue) and widespread ectopic lipid deposition. In conclusion, our sheep model revealed strong pre- and postnatal impacts on growth, food preferences and fat deposition patterns. The present findings support a role for subcutaneous adipose tissue in the development of visceral adiposity, which in humans is known to precede the development of the metabolic syndrome in human adults.


Subject(s)
Eating , Food Preferences , Malnutrition/complications , Maternal Nutritional Physiological Phenomena , Obesity, Abdominal/etiology , Pregnancy Complications , Aging , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Birth Weight , Diet/veterinary , Female , Male , Models, Animal , Pregnancy , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...